August 13, 2021

Dr. Wen Yang Information Technology Unit California Regional Water Quality Control Board – Los Angeles Region 320 West Fourth Street, Suite 200 Los Angeles, California 90013

FIRST SEMIANNUAL 2021 MONITORING REPORT SUNSHINE CANYON CITY/COUNTY LANDFILL, SYLMAR, CALIFORNIA

Please find enclosed the first semiannual 2021 monitoring report for the Sunshine Canyon City/County Landfill to comply with the California Regional Water Quality Control Board – Los Angeles Region (RWQCB) Waste Discharge Requirements Order Number R4-2008-0088 and Monitoring and Reporting Program (M&RP) Cl-2043, updated July 21, 2009.

This report has been prepared by Geo-Logic Associates on behalf of Browning Ferris Industries (BFI) of California and summarizes January through June 2021 results for groundwater, surface water, leachate, vadose zone, liquid management, and waste disposal monitoring activities that were completed in accordance with M&RP CI-2043. Note, the November 9, 2020 update to M&RP CI-2043 does not become effective until the replacement corrective action program (CAP), which is currently being constructed, is completed and approved by the RWQCB.

During the monitoring period, no violations were issued for the facility. Groundwater quality conditions beneath the Sunshine Canyon City/County Landfill are generally similar to those observed during previous monitoring periods. Water quality protection standards (WQPS) were exceeded for a few analyte/well pairs; however, most of these analyte/well pairs have historically been detected at concentrations exceeding WQPS and their presence has previously been confirmed in retest samples. Accordingly, these analyte/well pairs are analyzed in tracking mode and no significant trends are noted for analyte/well pairs in tracking mode. With respect to WQPS exceedances for analyte/well pairs that are not in tracking mode, no retest samples confirmed WQPS exceedances, and therefore, no new analyte/well pairs were added to tracking mode during the monitoring period. Retesting is currently scheduled for potassium at well DW-1 and for tetrahydrofuran at well MW-1 to verify WQPS exceedances measured during the second quarter 2021 and results will be presented in the Second Semiannual 2021 Water Quality Monitoring Report.

During the first semiannual 2021 monitoring period, methane concentrations did not exceed 5%V at any landfill gas monitoring probe during monthly monitoring.

Leachate, landfill gas condensate, groundwater extracted near the cut-off wall, and groundwater collected from subdrains at the Sunshine Canyon Landfill were discharged to the Los Angeles City sanitary sewer system under City of Los Angeles Bureau of Sanitary permit W-535428.

I certify that all wastes placed at the Sunshine Canyon City/County Landfill were deposited in accordance with the RWQCB's requirements, and that no wastes were deposited outside of the limits permitted for waste disposal at this facility.

I, under penalty of perjury, do hereby state that I have personally examined and am familiar with the information submitted in this document, and to the best of my knowledge, and based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information contained in the attached report is true, complete, and correct.

If you have any questions regarding this report, please do not hesitate to call Mr. Tuong-Phu Ngo at (818) 362-2096 or email him at TNgo@republicservices.com.

Sincerely, Chris Coyle

General Manager Sunshine Canyon Landfill

Water Quality Monitoring Report First Semiannual (January – June) 2021 Sunshine Canyon Landfill Facility WDID #L0006014618

Submitted to

Los Angeles Regional Water Quality Control Board 320 West Fourth Street, Suite 200 Los Angeles, California 90013

Submitted by Republic Services, Inc. Sunshine Canyon Landfill 14747 San Fernando Road Los Angeles, California 91342

Prepared by

11415 W. Bernardo Court, Suite 200 San Diego, California 92127 www.geo-logic.com Project SO21.1059

August 2021

Certification

This Report was prepared in accordance with generally accepted professional hydrogeologic principles and practices. This Report makes no other warranties, either expressed or implied as to the professional advice or data included in it. This Report has not been prepared for use by parties or projects other than those named or described herein. It may not contain sufficient information for other parties or purposes.

GEO-LOGIC ASSOCIATES

Kyle Welchans, PG Project Geologist kwelchans@geo-logic.com 11415 West Bernardo Court, Suite 200 San Diego, CA 92127

JUB.

William B. Lopez, CHG, CEG Senior Geologist wlopez@geo-logic.com 11415 West Bernardo Court, Suite 200 San Diego, CA 92127

Date signed: 8/11/2021

Table of Contents

1.	Introduction	
2.	General Site Information 2.1 Site Description	
	2.2 Climate and Surface Water Hydrology	2
	2.3 Hydrogeologic Setting	2
	2.4 Groundwater Geochemistry	3
3.	Groundwater Monitoring	3
	3.1 Water Quality Monitoring Network	3
	3.2 Sampling and Laboratory Analysis	4
	3.3 QA/QC Results	4
	3.4 Groundwater Elevations	6
	3.5 Groundwater Chemistry Results	6
	3.5.1 Fourth Quarter 2020 Retest Groundwater Chemistry Resul	ts7
	3.5.2 First Quarter 2021 Groundwater Chemistry Results	7
	3.5.3 Second Quarter 2021 Groundwater Chemistry Results	8
	3.5.4 Tracking Mode Evaluation	9
4.	Vadose Zone Monitoring	
	4.1 Subdrain Monitoring	
	4.1.1 Subdrain Liquid Monitoring Points	
	4.1.2 First and Second Quarter 2021 Subdrain Monitoring Resu	ITS 12
	4.2 Lysimeter Monitoring	12
	4.2.1 Eysineter Monitoring Points	
5	Vadose Zone Gas Monitoring	13
с.		14
6.	Surrace water Monitoring	14
	6.1 NPDES Stormwater Monitoring	14
	6.2 Other Surface Water Menitoring	
	6.5 Other surface water Monitoring	14
7.	Leachate Monitoring	14
8.	Liquid Generation and Management	15
	8.1 Liquid Management	15

Groundwater Quality Monitoring Report Sunshine Canyon Landfill

9.	Drainage Structure Monitoring	16
10.	Waste Disposal Monitoring	16
11.	Waste Acceptance 11.1 First Semiannual 2021 Waste Acceptance Results	17 18
12.	Summary	19
Refe	rences	21

List of Figures

1	Site	Location	Мар

- 2 Site Monitoring Point Location Map
- 3A March 2021 Groundwater Equipotential Contours
- 3B March 2021 Groundwater Equipotential Contours
- 3C May 2021 Groundwater Equipotential Contours
- 3D May 2021 Groundwater Equipotential Contours
- 4 Vadose Zone Gas Monitoring Point Location Map

List of Tables

- 1 Regulatory Compliance Checklist
- 2 Analytical Parameters and Methods
- 3A Summary of Blank Sample Results First Quarter 2021
- 3B Summary of Blank Sample Results Second Quarter 2021
- 4A Summary of Duplicate Sample Results First Quarter 2021
- 4B Summary of Duplicate Sample Results Second Quarter 2021
- 5 Groundwater Elevations and Site Monitoring Well Information
- 6A Summary of Groundwater Analytical Results First Quarter 2021
- 6B Summary of Groundwater Analytical Results Second Quarter 2021
- 7A Comparision of Intrawell Water Quality Protection Standards to Groundwater Analytical Results – First Quarter 2021
- 7B Comparision of Intrawell Water Quality Protection Standards to Groundwater Analytical Results – Second Quarter 2021

- 8A Summary of Analytical Results for Vadose Zone Liquid Monitoring Points First Quarter 2021
- 8B Summary of Analytical Results for Vadose Zone Liquid Monitoring Points Second Quarter 2021
- 9 Summary of Methane Concentrations for Vadose Zone Gas Monitoring Points First Semiannual 2021 Monitoring Period
- 10 Summary of Analytical Results for Stormwater Samples First Semiannual 2021 Monitoring Period
- 11 Summary of Analytical Results for Leachate Monitoring Points April 2021
- 12 Summary of Collected Water Sources First Semiannual 2021 Monitoring Period
- 13 Waste Acceptance Sampling Summary
- 14-26 Waste Acceptance Sampling Results

List of Appendices

- A Sampling and Analysis Plan
- B Field Sample Collection Logs and Laboratory Analytical Reports
- C Landfill Gas Reports
- D NPDES Certification of Completion
- E Waste Placement Areas and Tonnage Reports
- F Waste Acceptance Analytical Results
- G Tracking Mode Trends

Acronyms and Abbreviations

BFI	Browning-Ferris Industries of California, Inc.
COC	Constituents of Concern
COD	Chemical Oxygen Demand
CY	Cubic Yard
DMP	Detection Monitoring Program
EC	Electrical Conductivity
ft/ft	Feet per Foot
GLA	Geo-Logic Associates
LCRS	Leachate Collection and Removal System
LEA	Local Enforcement Agency
µg/L	Micrograms per Liter
MCL	Maximum Contaminant Level
MDL	Method Detection Limit
mg/L	Milligrams per Liter
MRP	Monitoring and Reporting Program No. CI-2043
MSW	Municipal Solid Waste
ND	Non-Detect
Order	Waste Discharge Requirements R4-2008-0088
ORP	Oxygen Reduction Potential
PQL	Practical Quantitation Limit
QA/QC	Quality Assurance/Quality Control
QCAB	Quality Control Ambient (Field) Blank
QCTB	Quality Control Trip Blank
ROWD	Report of Waste Discharge
RPD	Relative Percent Difference
RWQCB	California Regional Water Quality Control Board – Los Angeles Region
SCLF	Sunshine Canyon Landfill
STLC	Soluble Threshold Limit Concentration
TDS	Total Dissolved Solids
TOC	Total Organic Carbon
TTLC	Total Threshold Limit Concentration
%V	Percent by Volume

- VOCs Volatile Organic Compounds
- WAP Waste Acceptance Plan
- WQPS Water Quality Protection Standards

1. Introduction

On behalf of Browning-Ferris Industries of California, Inc (BFI) and Sunshine Canyon Landfill, Geo-Logic Associates (GLA) presents this report summarizing semiannual water quality and waste intake monitoring and reporting performed for the first semiannual 2021 monitoring period (January through June) at the Sunshine Canyon Landfill (SCLF) in the city of Sylmar, California (Figure 1). Included in this report are the field observations and measurements, and laboratory results, for samples collected from site monitoring wells, lysimeters, extraction wells, piezometers, and other SCLF monitoring stations. This report was prepared to comply with the requirements of California Regional Water Quality Control Board – Los Angeles Region (RWQCB) Waste Discharge Requirements Order No. R4-2008-0088 (WDR) and Monitoring and Reporting Program (MRP) No. CI-2043. An overview of report content required by MRP CI-2043 is summarized in Table 1.

Of note, MRP No. CI-2043 was revised on November 9, 2020, though the revision does not become effective until construction of a replacement corrective action program (CAP) is completed and approved by the RWQCB. The replacement CAP is currently under construction.

2. General Site Information

The following provides a summary of the site conditions and includes: site description, climate and surface water hydrology, hydrogeologic setting, and groundwater geochemistry.

2.1 Site Description

The SCLF is an active Class III municipal solid waste (MSW) disposal facility located at 14747 San Fernando Road in Sylmar, California. The site property includes approximately 1,030 acres within the City of Los Angeles and an unincorporated area of Los Angeles County. The "County Landfill" Disposal Phases I through V are located north of the City-County boundary, and are equipped with a composite liner and leachate collection and removal system (LCRS). The "City Landfill" includes two waste disposal areas (Unit 1 and Unit 2) that are south of the City-County boundary. City Landfill Unit 1 is a closed, unlined Class III MSW disposal unit that operated between 1958 and 1993. City Landfill Unit 2 is an active, Class III MSW disposal unit that is equipped with a composite liner system and is located generally between City Landfill Unit 1

and the County disposal phases. Cell A of City Landfill Unit 2 began operations during the third quarter of 2005, with subsequent disposal operations expanding into Cells CC-1, CC-2, CC-3, and most recently, CC-4.

2.2 Climate and Surface Water Hydrology

SCLF is located north of the San Fernando Valley, near the junction of the Santa Susana Mountains to the west and the San Gabriel Mountains to the east. Climatic conditions in the area are semi-arid and characterized by mild winters, when most of the precipitation occurs, and warm dry summers. The average annual precipitation in the area of Sunshine Canyon is approximately 22 inches. During the period from 1941 to 1995 the maximum annual precipitation was 55.8 inches; the minimum was 10.2 inches. The maximum expected 100-year, 24-hour storm is approximately 12 inches.

The facility is located within the 900-square-mile Los Angeles River Watershed Basin. Surface water runoff originating in Sunshine Canyon exits through the mouth of the canyon, where it is conveyed in a southerly direction.

2.3 Hydrogeologic Setting

The SCLF is underlain predominantly by marine sedimentary rocks of the late Miocene to early Pliocene Towsley Formation, consisting of siltstone and fine-grained sandstone interbedded with lenses of coarse-grained sandstone and conglomerate. This unit is locally overlain by younger sedimentary deposits consisting of alluvium, colluvium, and/or landslide debris that consist of varying mixtures of unconsolidated sand, gravel, silt, and clay derived from the Towsley Formation. These unconsolidated alluvial materials were originally present in many of the canyon thalwegs that cross the site, but, in most instances, these materials have been removed as part of site development. Where alluvium remains, it may be up to 30 feet thick.

Groundwater beneath the site occurs in two main zones: 1) a shallow, unconfined water-bearing zone consisting of alluvial deposits and/or upper weathered portions of the bedrock, and 2) a deeper, locally confined water-bearing zone in the Towsley Formation. The hydraulic conductivity of the bedrock (including both weathered and unweathered portions) ranges from 2.8 to 2.8e⁻⁶ feet per day (ft/day) with values generally increasing with increasing weathering and fracture density. The hydraulic conductivity of the alluvial deposits is estimated to be from 28.3 to 0.28 ft/day.

2.4 Groundwater Geochemistry

Previous hydrogeologic investigations conducted for the SCLF have identified significant spatial variability in groundwater chemistry beneath the site. The surrounding Santa Susana Mountains are an area of ongoing, extensive oil exploration and production, as indicated by the oil production facilities surrounding the site. The region is characterized by several east-west trending fault systems that locally serve as large-scale crude oil traps. Upward seepage of crude oil and related brines along these faults, and their subsequent contact with site groundwater, have been documented at numerous locations at the SCLF. The presence of shallow crude oil deposits coupled with the low permeability of bedrock materials has resulted in extensive areas of reduced (poorly oxygenated) groundwater beneath the facility with locally elevated concentrations of alkalinity, ammonia-nitrogen, and, in some cases, sulfide. In addition, prelandfill monitoring has confirmed the presence of locally elevated concentrations of chloride, total organic carbon (TOC), chemical oxygen demand (COD), and potassium. These constituents have also been measured at high concentrations in samples of landfill leachate.

Beneficial uses of groundwater beneath the site are limited as a result of naturally-occurring, elevated concentrations of total dissolved solids (TDS) and the low groundwater production capability for wells screened in the bedrock.

3. Groundwater Monitoring

This section provides a summary of the water quality monitoring program for the site, as well as the monitoring activities, results, and conclusions based on data obtained during the first semiannual 2021 monitoring period.

3.1 Water Quality Monitoring Network

The Monitoring and Reporting Program CI-2043 establishes the following groundwater monitoring network for the SCLF:

MONITORING POINTS	MONITORING POINT ID	MONITORING FREQUENCY
Upgradient Monitoring Wells - Bedrock	CM-9R3, CM-10R, CM-11R	
Downgradient Monitoring Wells – Alluvium	MW-1, MW-5, MW-6, MW-13R, MW-14	
Downgradient Monitoring Wells – Bedrock	DW-1, DW-2, DW-3, DW-5, PZ-2, PZ-4	Quarterly
Corrective Action Evaluation Wells	MW-2A, MW-2B, MW-9, DW-4	
Piezometers	PZ-1, PZ-3, CM-5, MW-8	
Subdrains	Subdrain N, Combined Subdrains	
Lysimeters	LY-6, LY-7	
Leachate Monitoring Points	LR-2R, Deep Leachate*	Annual

Note: In November 2018 Leachate monitoring points "CA-L" and "Leachate" were plumbed together. Moving forward, a composite sample will be collected from "Deep Leachate", which reflects a mixture of leachate from all lined cells at the facility.

3.2 Sampling and Laboratory Analysis

Groundwater samples collected by GLA during the first and second quarter 2021 monitoring events were submitted to Eurofins Calscience (Eurofins) of Irvine, California. Eurofins is certified by the state of California and is the project laboratory under contract to BFI. Samples were analyzed for the indicator parameters during the first and second quarter 2021 and also for supplemental parameters during the second quarter 2021 (Table 2). In addition to the monitoring parameters, Table 2 includes laboratory analytical methods employed for the project, and the frequency that wells and other media monitoring stations are sampled. Site groundwater monitoring wells and leachate monitoring points are sampled in accordance with the sampling and analysis procedures detailed in Appendix A.

3.3 QA/QC Results

The quality assurance/quality control (QA/QC) program completed for the first semiannual 2021 water quality monitoring period included analyses of field blanks (QCAB), trip blanks (QCTB), laboratory method blanks, and duplicate samples. Field and trip blanks were analyzed for

volatile organic compounds (VOCs) by EPA Method 8260. Laboratory method blanks were analyzed for all monitoring parameters, and duplicate samples were analyzed for the same list of parameters required for its corresponding primary sample. Blank sample results are summarized in Tables 3A and 3B. Duplicate sample results are presented in Tables 4A and 4B. The results of the QA/QC sampling program are as follows:

First Quarter 2021 Monitoring Event

- All analyses were completed within the recommended holding times prescribed by the respective analytical method.
- As indicated on Table 3A, trace concentrations of tetrahydrofuran were measured in two field blank samples. Tetrahydrofuran was also detected in primary samples from two monitoring locations (MW-9 and Subdrain N) which have a history of tetrahydrofuran detections. The presence of tetrahydrofuran in field blank samples did not affect the interpretation of primary sample results, as the current tetrahydrofuran results for MW-9 and Subdrain N are similar to historical results for these monitoring points. In addition, trace concentrations of three tentatively identified compounds (TICs) were measured in field and trip blank samples. No further discussion of results for TICs in any first quarter 2021 samples is provided given that these compounds are "tentatively identified". Results for TICs are included in analytical reports in Appendix B.
- As shown in Table 4A, the relative percent difference (RPD) between quantifiable primary and duplicate water quality samples was two percent or less, indicating good agreement between primary and duplicate samples.

Second Quarter 2021 Monitoring Event

- All analyses were completed within the recommended holding times prescribed by the respective analytical method.
- As indicated on Table 3B, trace concentrations of acetone and tetrahydrofuran were measured in one or more field blank samples. In addition, bicarbonate, calcium, and iron were also measured in method blanks. Due to similar concentrations in method blanks, acetone and tetrahydrofuran are flagged as a field/laboratory contaminant in the sample from Subdrain N. Concentrations of bicarbonate, calcium, and iron were measured at much higher concentrations in primary samples compared to blank samples and therefore, the presence of these inorganic constituents in blank samples did not affect the interpretation of primary sample results.

- Several tentatively identified compounds (TICs) were measured at trace concentrations in blank samples. No further discussion of results for TICs in any second quarter 2021 samples is provided given that these compounds are "tentatively identified". Results for TICs are included in analytical reports in Appendix B.
- As shown on Table 4B, the RPD for quantifiable primary and duplicate sample results is seven percent or less.

The results of the QA/QC program completed during the first semiannual 2021 monitoring period are considered acceptable and representative of water quality at the site.

3.4 Groundwater Elevations

During the first semiannual 2021 monitoring period, quarterly depth to groundwater measurements were recorded on March 4 and May 17, 2021. Groundwater equipotential surface contours were developed for wells screened in bedrock using first and second quarter 2021 groundwater elevation data. Figures 3A and 3C depict groundwater elevation contours overlain on a topographic map for the March and May 2021 monitoring events (respectively). Because there is an underdrain system at the site which de-waters areas beneath landfill cells, groundwater contours mimic bottom of landfill liner elevations. Accordingly, Figures 3B and 3D depict groundwater contours for the March and May 2021 monitoring events (respectively), and include landfill liner elevations for clarity. As shown in these figures, groundwater generally mimics the canyon topography, converges at the base of the canyon, and flows to the southeast out the mouth of the canyon. The estimated horizontal groundwater velocity within the unweathered bedrock is approximately 1 to 10 feet per year (Geo-Logic Associates, 2009).

Comparison of groundwater elevations for wells screened in alluvium and bedrock suggest the possibility of appreciable upward vertical gradients may occur near the mouth of the canyon. Assuming communication between these water-bearing zones exists, the upward vertical gradient near the mouth of the canyon is approximately 0.06 to 0.08 ft/ft near well pairs MW-1/DW-5 and MW-2A/DW-4.

3.5 Groundwater Chemistry Results

Groundwater samples collected from site monitoring wells were analyzed for indicator parameters during the first quarter 2021 monitoring period, and for indicator and supplemental parameters during the second quarter 2021 monitoring period. Results for these sampling events are summarized on Tables 6A and 6B (respectively), and are discussed below. The field

sample collection logs, laboratory data, certificates of analyses, and chain-of-custody records for the sampling program are included in Appendix B.

3.5.1 Fourth Quarter 2020 Retest Groundwater Chemistry Results

Groundwater monitoring results for the fourth quarter 2020 monitoring event indicated that concentrations of TDS at well DW-1 and toluene at well DW-5 exceeded respective intrawell water quality protection standards (WQPS). Because these analyte/well pairs are not in tracking mode, retest samples were collected on February 23, 2021. The results are summarized in the following table.

WELL	ANALYTE	UNITS	WQPS	4 TH QUARTER 2020 RESULT	RETEST RESULT (1)	RETEST RESULT (2)
DW-1	Total Dissolved Solids	mg/L	3600.2	8300	3300	3200
DW-5	Toluene	μg/L	PQL	0.57	ND	ND

Note: "ND" – Not detected.

PQL – Practical Quantitation Limit

As shown in the table above, no retest samples exceeded the respective WQPS. Therefore, these analyte/well pairs will remain in detection mode.

3.5.2 First Quarter 2021 Groundwater Chemistry Results

During the first quarter 2021 monitoring event, samples from all monitoring wells were analyzed for the indicator parameters identified in Section II.B.3(a) of the MRP. These results are presented on Table 6A. Table 7A compares first quarter 2021 monitoring results with WQPS. The following table summarizes WQPS exceedances and verification retesting results (when applicable).

WELL	ANALYTE	UNITS	WQPS	1 st QUARTER 2021 RESULT	RETEST RESULT (1)	RETEST RESULT (2)
MW-1	1,4-Dioxane	μg/L	VOC	13	TM	TM
MW-5	1,4-Dioxane	μg/L	VOC	4.7	TM	TM
MW-13R	1,4-Dioxane	μg/L	VOC	7.8	TM	TM
PZ-2	Ammonia-Nitrogen	mg/L	3.598	3.6	3.2	3.2

Notes: Retesting only performed on analyte/well pairs not currently in Tracking Mode.

TM – Tracking Mode. No retesting conducted for analytes in Tracking Mode.

VOC - WQPS is one quantifiable detection or two or more estimated-trace detections.

ND - Not detected.

j – Estimated-trace concentration.

* - Also detected in blank samples.

With the exception of PZ-2 results, all constituents exceeding respective intrawell WQPS listed in the table above have historically been detected and their presence confirmed in retest samples. Accordingly, these analyte/well pairs are currently in "tracking mode" and retesting was not conducted. As shown in the preceding table, no retest results exceeded a respective WQPS. Therefore, these analyte/well pairs will remain in detection mode.

With respect to corrective action evaluation monitoring wells, four VOCs (two quantifiable) were measured in the sample from well MW-9 and one quantifiable VOC was measured in the sample from well MW-2A (Table 6A).

None of the analyte concentrations measured in samples collected during the first quarter 2021 monitoring period exceeded Federal or State primary drinking water Maximum Contaminant Levels (Table 6A). However, TDS results for all monitoring wells exceeded state secondary drinking water standards.

3.5.3 Second Quarter 2021 Groundwater Chemistry Results

Groundwater samples obtained during the second quarter 2021 monitoring event were analyzed for the indicator and supplemental parameters (Table 2). Analytical results for these samples are presented on Table 6B. As summarized below, and shown in Table 7B, the following well/constituent pairs exceeded a WQPS.

WELL	ANALYTE	UNITS	WQPS	2 ND QUARTER 2021 RESULT
	1,4-Dioxane	μg/L	VOC	17
MW-1	t-Butanol	μg/L	VOC	9.6
	Tetrahydrofuran	μg/L	VOC	1.7j
MW-5	1,4-Dioxane	μg/L	VOC	4.2
MW-13R	1,4-Dioxane	μg/L	VOC	7.3
DW-1	Potassium	mg/L	3.838	7.3

Notes: j – estimated trace detection.

VOC – WQPS is one quantifiable detection or two or more estimated-trace detections.

With the exception of potassium at DW-1 and tetrahydrofuran at well MW-1, the analyte/well pairs listed above are currently in "tracking mode". Verification retesting is currently scheduled for potassium at DW-1 and tetrahydrofuran at well MW-1. Results of verification retesting will be included in the July through December 2021 Semiannual Monitoring Report.

With respect to corrective action evaluation monitoring wells, one quantifiable VOC was measured in the sample collected from well MW-2A and six VOCs (four quantifiable) was measured in the sample from well MW-9 (Table 6B).

As shown on Table 6B, with respect to the routine indicator and supplemental monitoring parameters, concentrations of TDS, sulfate, fluoride, iron, and manganese exceed State of California primary (fluoride) or secondary drinking water standards in samples from many site monitoring wells, including upgradient (background) monitoring wells.

3.5.4 Tracking Mode Evaluation

During the first semiannual 2021 monitoring period, no new analyte/well pairs were added or removed from tracking mode (analyte/well pairs are removed from tracking mode when monitoring results have not exceeded respective concentration limits in more than three years). Time-series charts depicting well-analyte pairs in tracking mode are presented in Appendix G. The following table summarizes analytical trends and observations for analyte/well pairs in tracking mode.

WELL/ANALYTE PAIR	CONCENTRATION LIMIT	1 ST QUARTER RESULTS	2 ND QUARTER RESULTS	HISTORICAL TRENDS AND OBSERVATIONS
MW-1: 1,4-Dioxane	PQL	13	17	Consistent variable concentrations typically below 20 µg/L.
MW-1: t-Butanol	PQL	ND	9.6	One detection since 2018.
MW-5: 1,4-Dioxane	PQL	4.7	4.2	Consistently measured above the PQL. Decreasing trend since 2018
MW-5: t-Butanol	PQL	ND	ND	Not detected since February 2020.
MW-5: Ammonia-N	5.714 mg/L	4.6	4.0	Below WQPS since 2019.
MW-5: Alkalinity	727.34 mg/L	480	450	Rarely detected at concentrations above WQPS.
MW-5: Tetrahydrofuran	PQL	ND	ND	One measurement above WQPS.
MW-13R: 1,4-Dioxane	PQL	7.8	7.3	Variable concentrations between 4 μg/L and 11 μg/L since 2015.
MW-13R: Potassium	27.224 mg/L	22	24	Below WQPS since 2019.
MW-13R: Ammonia-N	7.732 mg/L	6.9	5.9	Typically near WQPS (above or below) except one outlier in February 2020.
MW-13R: COD	407.58 mg/L	200	140	Only two historical measurements above WQPS.
MW-14: Alkalinity	587.83	310	310	Only one WQPS since 2018.
MW-14: TDS	5128.5	3300	3100	Variable concentrations since 2017. Typically below the WQPS.
DW-3: Ammonia as N	0.7564 mg/L	0.64	0.69	Results are typically very near (above & below) the WQPS, except for four anomalous results in 2014, 2016, 2018, and 2019.
DW-5: Ammonia as N	0.3918 mg/L	0.34	0.28	Decreasing trend; below WQPS since 2020.
DW-5: Allyl Chloride	PQL	ND	ND	Intermittent detections; not detected recently.
PZ-4: Ammonia-N	2.976	2.7	2.3	Only two historical measurements slightly above the WQPS.

Note: **Bolded Red** = Concentration Limit Exceeded.

ND = Not Detected.

j = Estimated-trace concentration.

4. Vadose Zone Monitoring

Monitoring of the vadose zone at the SCLF is accomplished by collecting samples from the subdrains beneath composite liner systems at the site as well as from the pan lysimeters constructed beneath the leachate collection sumps for the lined portions of the landfill.

4.1 Subdrain Monitoring

Order No. R4-2008-0088 requires quarterly monitoring of landfill subdrain systems. As with groundwater, samples from each subdrain collection point are analyzed for indicator parameters on a quarterly basis and for supplemental parameters on a semiannual basis.

4.1.1 Subdrain Liquid Monitoring Points

Currently, the SCLF is equipped with four subdrain sampling points: Subdrain N, CC2-PER, CC2-5AC, and CC2-3A. Samples for CC2-PER, CC2-5AC, and CC2-3A are composited as one sample called "Combined Subdrains". Accordingly, samples obtained from locations Subdrain N and Combined Subdrains are submitted for laboratory anaylses.

Subdrain N liquid samples are collected from a port on the influent line to the facility's water treatment system, located near San Fernando Road. This sample represents the combined flow from subdrain collection systems installed beneath County Landfill disposal Phases I through V, and Cells A and CC-1 of City Landfill Unit 2.

Subdrain CC2-5AC liquid samples are pumped from a temporary vertical riser pipe located southeast of disposal Cell CC-3A, Part 1. The CC2-5AC liquid samples represent groundwater seepage to a subdrain collection system that underlies the southwest corner of Cell CC-2 at depths of approximately 10 to 30 feet below the CC-2/CC-3A, Part 1 liner system.

Samples from Subdrain CC2-PER are collected from a temporary outlet pipe located southeast of disposal cell CC-3A, Part 1. These samples represent groundwater seepage collected beneath the western margin of disposal cell CC-2. The subdrain CC2-PER collection system is approximately 10 feet below the CC-2/CC-3A Part 1 liner system and is perforated only along the western edge of CC-2 liner system. The CC2-PER subdrain system is hydraulically separated from adjacent (and partially overlapping) portions of subdrain liquid collection system CC2-5AC.

Subdrain CC2-3A likely collects liquids from the area of unlined City Landfill Unit 1. Because of the likelihood of landfill impacts to subdrain CC2-3A liquids, this subdrain outlet was established

with an angled riser and dedicated pumping system, so that liquids are collected and discharged to the sewer (City of Los Angeles Bureau of Sanitation permit W-535428). Subdrain CC2-3A liquid samples are collected from pumped discharge from this angled riser.

4.1.2 First and Second Quarter 2021 Subdrain Monitoring Results

Samples were collected from each subdrain monitoring point on March 4, 2021 for the first quarter and on May 17 and 18, 2021 for the second quarter. Samples were delivered to Eurofins for analyses of the indicator parameters (first and second quarter) and supplement parameters (fourth quarter).

As shown on Tables 8A (first quarter 2021) and 8B (second quarter 2021), the samples from Subdrain N and combined subdrains contained up to five and 16 VOCs (respectively; excluding laboratory/field contaminants). VOCs with the highest concentrations in first and second quarter 2021 Subdrain samples include:

- Subdrain N: t-butanol and 1,4-dioxane.
- Combined Subdrains: Acetone, 1,4-dichlorobenzene, 1,4-dioxane, t-butanol, and 2butanone.

With the exception of 1,4-dichlorobenzene results in combined subdrain samples, all VOC concentrations in subdrain samples were measured below State and federal drinking water standards during the current monitoring period. As is typical for SCLF subdrain samples, concentrations of sulfate, fluoride, TDS, iron, and manganese exceeded state secondary drinking water standards.

4.2 Lysimeter Monitoring

Order No. R4-2008-0088 requires construction and monitoring of lysimeters beneath landfill liner systems. On a quarterly basis, the lysimeters are monitored for the presence of liquids, and sampled if the liquid volume is sufficient. Liquids are pumped through a discharge line from the riser pipes and grab samples are collected, and analyzed for the Order-specific list of indicator parameters (quarterly) and supplemental parameters (semiannually).

4.2.1 Lysimeter Monitoring Points

The SCLF is currently equipped with two lysimeters: LY-6 and LY-7 (Figure 2). LY-6 monitors conditions beneath the County Landfill leachate sump, and is accessed through a 600-foot-long inclined riser at the east side of the Phase V disposal area. Lysimeter LY-7 monitors the conditions between the primary and secondary liners of City Landfill Unit 2, and is accessed using a 360-foot-long inclined riser at the east side of Cell A.

4.2.2 First and Second Quarter 2021 Lysimeter Monitoring Results

Lysimeter samples were collected from LY-7 on March 4 and May 18, 2021. LY-6 was dry during both quarterly monitoring events. As shown on Tables 8A and 8B, six VOCs were detected in samples from LY-7. The majority of VOCs in the sample from LY-7 are in the form of t-butanol, and to a lesser degree, 1,4-dioxane. No VOC concentrations exceeded a State or federal primary drinking water standard. As is typical for SCLF lysimeter samples, concentrations of chloride, TDS, iron, and manganese exceeded the State of California secondary (e.g., aesthetic) drinking water standard in at least one of the quarterly samples from LY-7.

5. Vadose Zone Gas Monitoring

Gas monitoring of the vadose zone is conducted on a monthly basis to comply with Order No. R4-2008-0088 and South Coast Air Quality Management District Rule 1150.1. Vadose zone gas monitoring is conducted by SCS Engineers and includes field screening for methane, carbon dioxide, oxygen, balance gases, and pressure at perimeter probes and upper subdrain termination points. The locations of vadose zone gas monitoring points are shown on Figure 4. Field reports prepared by SCS Engineers are provided in Appendix C.

During the first semiannual 2021 monitoring period, screening of the permanent vadose zone monitoring locations was conducted on a monthly basis. As shown on Table 9, no results exceeded five percent by volume (%V). The highest concentration of methane measured during the monitoring period was 2.3 %V at probe P-205R in May 2021. Excluding P-205R, no probes contained methane at or above 1.0 %V.

6. Surface Water Monitoring

This section of the report presents the results of the storm water, stream diversion, and seeps and spring monitoring activities conducted during the first semiannual 2021 monitoring period. Locations of surface water sampling points are shown on Figure 2.

6.1 NPDES Stormwater Monitoring

Landfill personnel periodically monitor the quality of storm water as part of the general NPDES Permit adopted for the facility, and additional storm water monitoring is conducted as part of the SCLF waste acceptance monitoring program. A summary of results of stormwater samples collected from the terminal basin (MP-1) at the SCLF is presented in Table 10.

6.2 Stream Diversion Monitoring

During the first semiannual 2021 monitoring period, construction activities at the facility were subject to requirements of Stream Bed Alteration Agreement #R5-2003-0005, adopted by the California Department of Fish and Game, though no monitoring of stream water quality was required during the current monitoring period.

6.3 Other Surface Water Monitoring

No new seeps or springs were identified during the current monitoring period.

7. Leachate Monitoring

In accordance with Order No. R4-2008-0088, leachate is to be monitored on an annual basis during the month of October. Grab samples are collected from leachate sumps and are analyzed for 40 CFR Appendix II analytes that are not already a COC for the landfill. Retesting of newly-identified 40 CFR Appendix II constituents (constituents measured at or above respective PQLs) is conducted in April. Those analytes that are present in both the primary and retest samples at concentrations equal to or above respective PQLs are added to the site-specific list of COCs.

The SCLF was equipped with two discrete leachate monitoring points (Figure 2):

- Leachate sample location "LR-2R" monitors leachate accumulation near the base of unlined City Landfill Unit 1.
- Leachate from lined cells (County Landfill Phases I through V and City Landfill Unit 2) collects to a sump and is pumped to above ground tanks before being discharged to the sewer under City of Los Angeles Bureau of Sanitary permit W-535428. This location is referred to as "Deep Leachate" which represents a composite mixture of leachate from all lined cells at the SCLF. Samples are collected from a sample port on a pipe prior to the above ground tanks.

Leachate samples were collected from monitoring point "Deep Leachate" and "LR-2R" on October 5, 2020. Based on the results obtained, retesting was conducted on April 27, 2021 for naphthalene at LR-2R. As summarized on Table 11, a quantifiable concentration of naphthalene was measured in the sample from LR-2R and therefore, naphthalene has been added to the sitespecific COC list.

8. Liquid Generation and Management

Ongoing waste disposal operations at the SCLF result in the generation of significant volumes of liquids, including leachate, landfill gas condensate, subdrain liquids, groundwater collected at the extraction trench, groundwater sampling purge water, and seepage water. In accordance with Order No. R4-2008-0088, the volume of water collected, treated, used onsite, and discharged offsite from each source are required to be recorded on a monthly basis (Table 12).

8.1 Liquid Management

During the first semiannual 2021 monitoring period, approximately 23,457,721 gallons of liquid were collected from the SCLF and transferred to the sewer (Table 12; under City of Los Angeles Bureau of Sanitary permit W-535428). In order to supplement water needs, the site purchased approximately 41,862,568 gallons of water from the City of Los Angeles Department of Water and Power (Table 12). Of note, the meter for the cutoff wall has been taken offline due to construction of the front entrance toe berm, though the facility notes the system has been running continuously without interruptions.

9. Drainage Structure Monitoring

Order No. R4-2008-0088 requires periodic site inspections as part of the site's current NPDES storm water permit. Between October and April of each year, inspections are to be conducted following each storm that produces significant runoff or on a monthly basis if no storm event produces significant runoff during this period. Between May and September, inspections are to be made on a quarterly basis. Each inspection is to include the following "standard observations":

- Evidence of surface water leaving or entering the site, including an estimate of the size of the affected area and the estimated flow rate;
- Presence or absence of odors, including characterization, source, and distance of travel from the source;
- Evidence of erosion and/or exposed refuse;
- Inspection of all storm water discharge locations for evidence of non-storm water discharges (during dry season) and integrity (during wet season);
- Evidence of ponded water at any point on the waste management facility (show affected areas on a map); and
- Assessment of compliance with the facility's Storm Water Pollution Prevention Plan, including proper implementation of the terms of the General NPDES Storm Water Permit.

During the first semiannual 2021 monitoring period, the required standard observations were made by site personnel. The site's NPDES certification of completion for the first semiannual 2021 monitoring period is included in Appendix D.

10. Waste Disposal Monitoring

During the first semiannual 2021 monitoring period, the quantity of municipal solid waste deposited at the SCLF was monitored daily. The monthly tonnages of waste deposited at the site are summarized in the following table.

MONTH	WASTE DISPOSAL TONNAGE	ESTIMATED VOLUME (CY)
January	232,879	282,444
February	194,607	262,719
March	226,258	305,448
April	219,318	296,079
May	218,016	294,321
Ju e	238,383	321,817
January – June 2021 Totals:	1,329,461	1,762,828

Note: Waste volumes were calculated using an assumed 1480 pounds per cubic yard of waste.

As summarized in the preceding table, during the first semiannual 2021 monitoring period, approximately 1,329,461 tons of waste was disposed of at the SCLF. The remaining capacity at the SCL is estimated at approximately 69,045,057 cubic yards. Based on the currently approved maximum tonnage acceptance rate, the site has a remaining life of approximately 30 years.

The location of waste placement during the monitoring period is presented on a map in Appendix E.

During the first semiannual 2021 monitoring period, all waste loads accepted at the site were subjected to checking at the scale house. As certified in the transmittal letter for this report, the site allowed no unauthorized waste disposal during the current monitoring period. No wastes were deposited outside of the areas permitted to receive waste.

11. Waste Acceptance

As outlined in the Amended WDRs (March 11, 2011), generators delivering contaminated soils to the SCLF are required to demonstrate that the soil chemistry meets specific requirements through a specific sampling and analysis program. All non-designated, non-hazardous contaminated soils that are brought to the site are disposed of as wastes in the lined sections of the landfill. Accordingly, these soils are required to meet the requirements outlined in Section 2.2 of the Waste Acceptance Plan, Revision 1 (WAP; RMC Geosciences, Inc., 2014).

As required by the Amended WDRs and WAP, prior to delivery to the SCLF, generators are required to collect and analyze representative samples at the following frequency:

- Up to 1000 cubic yards: At least one sample for each 250 cubic yards.
- Between 1000 and 5000 cubic yards: At least 4 samples for the first 1000 cubic yards, and 1 sample for each additional 500 cubic yards.
- More than 5000 cubic yards: At least 12 samples for the first 5000 cubic yards, and 1 sample for each additional 1000 cubic yards.

Samples are required to be analyzed for potential site-specific contaminants by a certified analytical laboratory, and the results are provided to Republic for review, profile development, and determination of acceptability. Republic may request additional sampling or analyses to ensure compliance with the Amended WDRs and WAP.

Analytical results for special wastes are included in Appendix F and are summarized in Tables 13 through 17.

11.1 First Semiannual 2021 Waste Acceptance Results

The contaminated soil generators, analyses performed, type of special waste, and quantity of special waste disposed of during the monitoring period are summarized in Table 13.

When applicable, constituents measured at or above the Method Detection Limit (MDL) were then compared to calculated threshold limit concentrations as detailed in the site-specific Waste Acceptance Plan, Revision 1 (RMC Geosciences, Inc., 2014), and determined to be acceptable for disposal in lined cells if the measured concentrations were below these levels. As stipulated in the Amended WDRs, wastes containing analytes that exceed PRG or CHHSL levels may be accepted if the analyte concentrations do not exceed the respective State of California Hazardous Waste levels (as listed in Title 22 of the California Code of Regulations Section 66261.24) and Total Designated Levels (as calculated following the guidelines in Section C.3 of the Amended WDRs), whichever is lower. When comparing analyte concentrations to California hazardous waste levels, the total analyte concentration must be below its respective Total Threshold Limit Concentration (TTLC) and it must be below ten times the Soluble Threshold Limit Concentration. To be considered acceptable, the soluble analyte concentration must also be below its respective STLC value.

All special wastes that were disposed of at the SCL during the first semiannual 2021 monitoring period met the waste acceptance requirements of the Amended WDRs and the site-specific WAP (Tables 13 through 26).

12. Summary

During the first semiannual 2021 monitoring period, groundwater elevations and chemistries were generally similar to past monitoring events. No evidence of a new release, or changes in existing release conditions was identified.

During the first semiannual 2021 monitoring periods, concentration limits were exceeded for several analyte/well pairs that have historically been in tracking mode. Review of the tracking mode charts (Appendix G) indicates that there are no increasing trends for tracking mode analyte/well pairs. Retesting performed for analyte/well pairs not in tracking mode, did not confirm any exceedances during the monitoring period. Accordingly, no new analyte/well pairs were added or removed from tracking mode during the first semiannual 2021 monitoring period. Retest results are pending for second quarter 2021 exceedances of potassium at well DW-1 and tetrahydrofuran at well MW-1. The results will be reported in the Second Semiannual 2021 Water Quality Monitoring Report.

During the first semiannual 2021 monitoring period, methane concentrations did not exceed 5%V at any landfill gas monitoring probe during monthly monitoring.

No new seeps were identified during the first semiannual 2021 monitoring period.

Leachate, landfill gas condensate, groundwater extracted near the cut-off wall, and groundwater collected from subdrains at the SCLF were discharged to the Los Angeles City sanitary sewer system. Total volumes from each water source are shown in Table 12.

The following construction activities occurred during the first half of 2021:

- Cell design for Cell CC-5, Part 4B is in progress. The cell is anticipated to be 13 acres in size with construction beginning during the third quarter of 2021.
- Several landfill gas collection and control system upgrades were completed in the first half of 2021, including installations/activations of:

- o 50 new and replacement vertical extraction wells,
- 10,000 feet of horizontal gas collectors,
- o 16 dewatering pumps in vertical extraction wells,
- Header pipes, air and force main lines, and de-scalers,
- Ongoing construction of the front entrance project (new access roadway).

References

California Regional Water Quality Control Board, Los Angeles Region, 2008, "Order No. R4-2008-0088 – Corrective Action Program Waste Discharge Requirements for Browning-Ferris Industries of California, Inc. (Sunshine Canyon City/County Landfill), File No. 58-076," October 2, 2008.

California Regional Water Quality Control Board, Los Angeles Region, 2009, "Revised Monitoring and Reporting Program (No. CI-2043) for Browning-Ferris Industries of California, Inc. (Sunshine Canyon City/County Landfill), File No. 58-076," July 21, 2009.

Geo-Logic Associates, 2020, "Groundwater Corrective Action System Modification Workplan, Sunshine Canyon City/County Landfill, Los Angeles, California." September 8.

RMC Geoscience, Inc., 2014, "Waste Acceptance Plan, Revision 1, Sunshine Canyon Landfill, Los Angeles County, California." December.

FIGURES

:\Dwgs\2021\SO 1059-Sunshine\21-1\site mon-pnts location mgp

EXPLANATION:

	APPROXIMATE PROPERTY BOUNDARY
· ·	APPROXIMATE LIMIT OF REFUSE
	EXISTING GRADE CONTOUR
	APPROXIMATE LOCATION OF SANTA SUSANA FAULT
- (-	GROUNDWATER MONITORING WELL (SHALLOW)
۲	GROUNDWATER MONITORING WELL (BEDROCK)
•	ABANDONED GROUNDWATER MONITORING WELL
	SURFACE WATER MONITORING POINT
×	SUBDRAIN MONITORING POINT
\star	LYSIMETER MONITORING POINT
	LEACHATE MONITORING POINT
	LEACHATE SUMP

Q-MW-5

BASE TOPOGRAPHY DATED 2/13/2020

FIGURE 2

SITE MONITORING POINTS LOCATION MAP FIRST SEMIANNUAL 2021 MONITORING REPORT SUNSHINE CANYON LANDFILL LOS ANGELES, CALIFORNIA Geo-Logic

A S S O C I A T E S J DRAFTER/PM: VL/KW DATE: AUGUST 2021 JOB NO. S021.1059

|--|

EXPLANATIO)N:

|--|

EXPLANATIO)N:

	APPROXIMATE PROPERTY BOUNDARY
- ·	APPROXIMATE LIMIT OF REFUSE
	EXISTING GRADE CONTOUR
	APPROXIMATE LOCATION OF SANTA SUSANA FAULT
-	GROUNDWATER MONITORING WELL (SHALLOW)
	GROUNDWATER MONITORING WELL (BEDROCK)
	ABANDONED GROUNDWATER MONITORING WELL
.93)	GROUNDWATER ELEVATION IN FEET ABOVE MSL
36]	DATA NOT USED TO CREATE CONTOURS
00	APPROXIMATE GROUNDWATER POTENTIOMETRIC SURFACE ELEVATION CONTOUR (CONTOUR INTERVAL = 100 FEET)
	APPROXIMATE DIRECTION OF GROUNDWATER FLOW
	LANDFILL LINER ELEVATION CONTOURS

	APPROXIMATE	PROPERTY	BOUNDARY
--	-------------	----------	----------

TABLES

TABLE 1REGULATORY COMPLIANCE CHECKLIST - MONITORING AND REPORTING PROGRAM CI-2043SUNSHINE CANYON LANDFILL

MRP		
SECTION	REPORTING REQUIREMENT	REPORT SECTION
	Transmittal Letter	Republic Transmittal Letter
	Discussion of Violations	Section 12; Republic Transmittal Letter
I.A.1	Planned Corrective Actions (as applicable)	Section 12; Republic Transmittal Letter
	Signature of Owner/Operator Principal	Republic Transmittal Letter
	Statement of validity, accuracy, and completeness	Republic Transmittal Letter
I.A.2	Summary of Non-Compliance	Section 12; Republic Transmittal Letter
I.A.3	Site Conditions	Section 2
	Narrative Description	
	Monitoring Parameters	Section 3.2, Table 2
	Groundawter Monitoring	Section 3
	Water Quality Protection Standards	Section 3.5, Tables 7A, 7B
	Statistical and Non-Statistical Data Analysis	Section 3.5, Tables 7A, 7B
I.A.4	Groundwater Flow Monitoring	Section 3.4
	Leachate Monitoring	Section 7.0
	Vadose Zone Liquid Monitoring	Section 4.0
	Vadose Zone Gas Monitoring	Section 5.0
	Surface Water Monitoring	Section 6.0
	On-Site Water Use Monitoring	Section 8.0
	Laboratory Results	
	Groundwater	Appendix B, Tables 6A and 6B
	Subdrain and Lysimeter Liquid	Appendix B, Tables 8A and 8B
	NPDES Monitoring	Table 10
145	Stream Diversion	Section 6.2
1.71.5	Spring Water	Section 6.3, Appendix D
	Leachate	Appendix B; Table 11
	Trench Liquid	Appendix B
	Non-Target Volatile Organic Compounds	Appendix B
-	QA/QC Sample Results	Section 3.3, Tables 3A, 3B, 4A, and 4B, Appendix E
	Summary and Certification of Standard Observation in accordance with	
I.A.6	NPDES requirements	Appendix D
	Summary of total volumes of liquids, on a monthly basis, of landfill	
I.A.7	leachate, condensate, and subdrain water.	Table 12
	Method of managing landfill-generated liquids.	Section 8.0
	Table of estimated average monthly quantities of deposited waste (tons	
I.A.8.a	and cubic yards)	Section 10.0; Appendix E
	An estimate of the remaining capacity (in tons and cubic yards) and the	
I.A.8.b	remaining life of the site in years and months.	Section 10.0
	Certification that all wastes comply with RWQCB requirements and were	
I.A.8.c	placed within the permittied boundary.	Republic Transmittal Letter
I.A.8.d	Description and estimated flow rate of seeps and springs.	Appendix D
	Estimated amount of water used for landscape irrigation, dust	
I.A.8.e	suppression, and operations.	Table 12
	Date, source, quantity, description, and management of unacceptable	
I.A.8.f	wastes received at the facility.	Section 10.0
-	Map showing waste disposal locations	Appendix E
I.A.9	Map showing monitoring locations	Figure 2; Figure 4
	Map showing groundwater contours	Figures 3A through 3D

TABLE 2 ANALYTICAL PARAMETERS AND METHODS SUNSHINE CANYON LANDFILL

Parameter	Typical USEPA	Frequency
	Method	
Indicator Parameters		
Liquid Level	Field	Quarterly
Alkalinity, total	310.1	Quarterly
Ammonia as Nitrogen	350.2	Quarterly
Chemical oxygen demand (COD)	410.2	Quarterly
Chloride	300.0	Quarterly
Potassium, total	6010B	Quarterly
Total Organic Carbon (TOC)	415.1	Quarterly
Total Dissolved Solids (TDS)	160.1	Quarterly
Volatile Organic Compounds (Appendix I, MTBE, TBA,		2001001
dichlorodifluoromethane, tetrahydrofuran, and carbon disulfide)	8260B	Quarterly
1,4-Dioxane	8270 or 8260SIM	Quarterly
Supplemental Parameters		
nH	Field	Semiannual
Electrical Conductivity (EC)	Field	Semiannual
	Field	Semiannual
Turbidity	Field	Semiannual
Bicarbonate as CaCO3	310.1	Semiannual
Boron total	6010B	Semiannual
Bromide	300.0	Semiannual
Calcium total	6010b	Semiannual
Carbon dioxide	SM4500-CO2	Semiannual
Eluoride	340.2	Semiannual
Iron total	6010B	Semiannual
Magnesium, total	6010B	Semiannual
Manganese, total	6010B	Semiannual
Nitrate-N	300.0	Semiannual
Sodium, total	6010B	Semiannual
Sulfate	300.0	Semiannual
Sulfide	376.2	Semiannual
Constituents of Concern (COCs)		(Last conducted June 2016)
Antimony (dissolved)	6010B	Every Eive Vears
Arcanic (dissolved)	200.8	Every Five Years
Barium (dissolved)	200.8 6010B	Every Five Years
Beryllium (dissolved)	6010B	Every Five Years
Chromium (dissolved)	6010B	Every Five Years
Cobalt (dissolved)	6010B	Every Five Years
Conner (dissolved)	6010B	Every Five Years
Lead (dissolved)	6010B	Every Five Years
Mercury (dissolved)	7470	Every Five Years
Nickel (dissolved)	6010B	Every Five Years
Solonium (dissolved)	6010B	Every Five Years
Silver (dissolved)	6010B	Every Five Years
Thallium (dissolved)	6010B	Every Five Years
Tin (dissolved)	6010B	Every Five Years
Vanadium (dissolved)	6010B	Every Five Vears
Zinc (dissolved)	6010B	Every Five Vears
Semivolatile Organic Compounds	8270	Every Five Years
Any other pollutants that are detected in leachate	Various	Every Five Years
		(Next COC Sampling: Dec 2021)

TABLE 3A SUMMARY OF BLANK SAMPLE RESULTS - FIRST QUARTER 2021 SUNSHINE CANYON LANDFILL

Primary Sampling Date	Blank Sampling Date	Blank Sample Collection Type	Reported Analytes
	3/4/21	QCAB	Tetrahydrofuran (1.5j μg/L), N(1,1-Difluoro-2,2-bis-trifluor-methylethyl)-aziridine (740j μg/L, TIC)
3/4/21	3/4/21	QCTB	1,1 -dichloro-Germacyclohexane (1200j µg/L, TIC)
	3/4/21	Method Blank	None Detected
	3/8/21	QCAB	Cyclobuthanol (17j μg/L, TIC)
3/8/21	3/8/21	QCTB	None Detected
	3/8/21	Method Blank	None Detected
	3/9/21	QCAB	Tetrahydrofuran (1.1j μg/L)
3/9/21	3/9/21	QCTB	None Detected
	3/9/21	Method Blank	None Detected
	3/10/21	QCAB	None Detected
3/10/21	3/10/21	QCTB	None Detected
	3/10/21	Method Blank	None Detected

TABLE 3B SUMMARY OF BLANK SAMPLE RESULTS - SECOND QUARTER 2021 SUNSHINE CANYON LANDFILL

Primary Sampling Date	Blank Sampling Date	Blank Sample Collection Type	Reported Analytes
	5/17/21	QCAB	Acetone (6.1j µg/L); Tetrahydrofuran (1.4j µg/L)
5/17/21	5/17/21	QCTB	Amphetamine-3-methyl (550j μg/L, TIC); Bactobolin (110j μg/L, TIC); Benzeneethanamine, 4-fluoro- .beta.,3-dihydroxy-N-methyl (250j μg/L, TIC); Benzenemethanol, 3-hydroxyalpha [(methylamino)methyl]- (180j μg/L, TIC); R-(-)-Cyclohexylethylamine (140j μg/L, TIC)
	5/17/21	Method Blank	None Detected
	5/18/21	QCAB	Acetone (4.9j µg/L)
5/18/21	5/18/21	QCTB	3-Ethylenimino-acrylonitrile (180j μg/L, TIC)
	5/18/21	Method Blank	Total Alkalinity as CaCO3 (10 mg/L); Bicarbonate Alkalinity as CaCO3 (10 mg/L)
	5/19/21	QCAB	Acetone (5.2j μg/L); Sulfur dioxide (310j μg/L, TIC)
5/19/21	5/19/21	QCTB	Sulfur dioxide (500j µg/L, TIC)
	5/19/21	Method Blank	None Detected
	5/20/21	QCAB	2-Pyridinecarboxylic acid, 3-nitro-, methyl ester (110j μg/L, TIC)
5/20/21	5/20/21	QCTB	None Detected
	5/20/21	Method Blank	Calcium, Recoverable (0.0858j mg/L); Iron, Total Recoverable (0.756 mg/L)

j: Indicates a trace concentration (between the Method Detection Limit and Practical Quantitation Limit.

TABLE 4A SUMMARY OF DUPLICATE SAMPLE RESULTS - FIRST QUARTER 2021 SUNSHINE CANYON LANDFILL

ANALYTE	MW-14 3/8/21	DUPLICATE 3/8/21	RELATIVE PERCENT DIFFERENCE						
GENERAL CHEMISTRY CONSTITUENTS (mg/L):									
Alkalinity, total	310	310	0						
Ammonia (as N)	0.10	0.10	NC						
Chemical Oxygen Demand	10	10	NC						
Chloride	23	23	0						
Total Dissolved Solids	3300	3300	0						
Total Organic Compound	4.5	4.6	2						
METALS (mg/L):									
Potassium	8.7	8.9	2						
VOLATILE & SEMI-VOLATILE OR	GANIC COMPOUN	DS (µg/L):							
1-Chloro-1-fluoro-Ethane (TIC)	210	190	NC						
Sulfur Oxide (TIC)	170	NA	NC						

TABLE 4B

SUMMARY OF DUPLICATE SAMPLE RESULTS -SECOND QUARTER 2021 SUNSHINE CANYON LANDFILL

DW-4	DUPLICATE	RELATIVE PERCENT
5/18/2021	5/18/2021	DIFFERENCE
JENTS (mg/L):		
340	340	0
4.4	4.4	0
340	340	0
0.48	0.48	NC
32	32	0
10	10	0
13	13	0
0.40	0.40	NC
0.11	0.11	NC
1800	1800	0
0.027	0.027	NC
2900	2800	4
1.8	1.7	6
0.58	0.59	2
170	170	0
1.4	1.5	7
120	120	0
0.11	0.11	0
3.9	4.0	3
450	470	4
RGANIC COMPOL	INDS (µg/L):	
0.34	0.34	NC
	DW-4 5/18/2021 JENTS (mg/L): 340 0.48 32 10 0.48 0.48 0.48 0.48 0.48 0.48 0.40 0.11 1800 0.027 2900 0.11 1800 0.027 2900 1.8 0.58 170 0.58 170 0.58 170 0.58 0.58 170 0.58	DW-4 DUPLICATE 5/18/2021 5/18/2021 JENTS (mg/L): 340 4.4 4.4 340 340 4.4 4.4 340 340 0.48 0.48 32 32 10 10 13 13 0.40 0.40 0.11 0.11 1800 1800 0.027 0.027 2900 2800 1.8 1.7 1.8 1.7 1.9 1.80 0.027 0.027 0.027 1.70 1.8 1.7 1.9 1.8 1.10 1.70 1.11 0.11 0.58 0.59 1.70 1.70 1.4 1.5 1.20 120 0.11 0.11 3.9 4.0 450 470 0.34

Notes:

Right-justified value, non-shaded box indicates a quantified concentration (above the Practical Quanitation Limit).

Right-justified, bolded value with a shaded box indicates an estimated-trace concentration.

Left-justified value, shaded box indicates not detected (method detection limit shown). NC = Not calculated (relative percent difference only calculated for quantifiable concentrations).

Only detected constituents shown.

* - Detected in method blank at similar concentration.

Well Number	MW-1	MW-2A	MW-2B	MW-5	MW-6	MW-9	MW-13R	MW-14	DW-1	DW-2	DW-3	DW-4
Well Casing Elevation (ft, MSL)	1344.48	1381.71	1381.98	1341.42	1347.32	1363.32	1345.78	1354.19	1351.93	1521.92	1682.54	1382.02
Approximate Well Casing Elevation (ft, MSL)* Total Depth of Well (ft)	- 29.60	1397.01	1398.68	26.20	23.50	- 26.70	- 27.80	- 28.10	205.80	- 72 30	256.60	1400.82
Pump Depth (ft)	27.30	24.70	52.20	25.00	19.70	24.90	26.40	25.00	199.00	70.00	247.00	
Well Diameter (in)	4 Diaddar	4 Diaddar	4 Diaddar	2 Diaddar	2 Diaddar	4 Diaddar	4 Diaddar	4 Diaddar	4 Drep Tube	4 Diaddar	4 Diaddar	4 Diaddar
Depth to Water (ft below TOC)	biauuer	biauder	Biduuei	biduuei	biauuer	biduuer	biduuer	Bidduel	Drop Tube	biduuer	biduuer	biduuei
3/9/12	17.08	21.38	5.58	19.03	16.97	20.96	17.59	14.83	0.00	25.74	151.46	5.54
3/28/12	16.85	21.37	5.44	NM	16.72	20.28	16.89	14.79	0.00	NM	NM	5.52
9/18/12	17.56	21.74	5.81	19.70	17.09	13.36	18.10	15.08	0.00	28.38	151.68	5.79
12/17/12	17.94	21.96	5.90	19.24	16.62	12.56	17.51	14.98	0.00	27.33	151.98	5.90
6/25/13	15.88	21.60	5.73	18.84	16.34	14.81	17.36	14.48	0.00	26.88	150.31	6.28
9/16/13	16.95	21.88	6.04	19.71	16.85	16.95	17.71	14.92	0.00	28.78	151.82	6.35
12/16/13 3/24/14	16.58 15.92	21.81 21.89	5.84 5.70	19.44 19.82	16.62 17.16	17.01	17.62	14.68 15.42	0.00	29.48	152.19	6.28
6/9/14	16.41	21.96	7.04	19.14	16.54	12.63	17.74	14.80	0.00	30.47	152.54	6.65
9/15/14	17.16	22.38	6.76	19.67	16.82	12.01	18.04	14.79	0.00	31.82	152.72	6.87
3/23/15	16.59	20.60	4.98	19.05	16.17	20.04	18.24	14.55	0.00	31.57	152.89	5.24
6/15/15	16.86	22.10	5.57	19.41	16.72	22.02	18.34	14.73	0.00	32.74	151.25	5.75
9/28/15	17.27	21.91	5.59	19.91	16.69	19.49	18.75	14.80	0.00	33.88	151.11	5.86
3/28/16	16.61	19.05	12.41	19.33	16.46	20.20	18.53	14.61	0.00	33.56	151.71	14.12
6/20/16	16.89	17.14	11.52	19.81	16.67	16.64	18.61	14.85	0.00	34.66	152.51	18.11
9/19/16 12/19/16	17.49	32.29	20.05	20.01	10.83	15.46	19.20	14.87 14.61	0.00	35.10	153.10	32.82
3/13/17	15.19	30.43	17.64	17.58	16.38	13.96	17.22	14.44	0.00	23.08	153.54	21.79
6/12/17	15.59	30.84	17.11	18.61	16.53	12.95	17.42	14.58	0.00	23.56	153.21	21.94
12/4/17	15.84	34.01	18.75	19.14	16.85	13.44	17.74	14.50	0.00	24.85	155.77	32.32
3/12/18	14.36	33.71	18.67	19.47	16.11	13.45	16.94	14.67	0.00	25.51	154.38	32.72
6/12/18 9/18/18	14.49 15.59	32.56	17.77	18.88	16.47 16.78	17.81	16.69 17.07	14.52 14.55	0.00	25.56	154.63 154.82	32.59
12/10/18	13.14	33.62	18.86	18.34	16.20	19.26	16.13	14.17	0.00	27.85	155.37	32.84
3/25/19	8.19	32.25	18.17	15.22	15.38	14.84	16.06	13.84	0.00	19.39	155.32	32.19
9/9/19	8.61	32.37	16.80	16.83	16.15	20.95	16.43	14.31	0.00	21.97	155.45	32.18
12/2/19	14.01	33.52	17.58	17.73	16.24	21.84	16.28	14.01	0.00	24.51	155.84	32.33
2/17/20	15.16	33.56	17.66	18.07	16.30 16.36	22.11	16.85	14.09	0.00	24.08	156.01	32.35
9/21/20	15.92	33.64	17.71	18.47	16.35	22.19	17.70	13.99	0.00	24.60	156.52	32.22
12/21/20	15.99	33.54	17.58	18.50	16.09	22.39	17.59	13.68	0.00	25.08	156.44	32.18
5/17/21	16.03	33.73	17.66	18.62	16.33	18.39	17.71	14.07	0.00	25.55	157.04	32.28
Liquid Elevation (ft, MSL)												
3/9/12 3/28/12	1327.40 1327.63	1360.33 1360.34	1376.40 1376.54	1322.39 NM	1330.35 1330.60	1342.36 1343.04	1328.19 1328.89	1339.36 1339.40	1351.93 1351.93	1496.18 NM	1531.08 NM	1376.48 1376.50
6/22/12	1327.17	1360.29	1376.41	1322.05	1330.19	1348.06	1327.95	1338.72	1351.93	1495.28	1530.85	1376.39
9/18/12	1326.92	1359.97	1376.17	1321.72	1330.23	1349.96 1350.76	1327.68	1339.11	1351.93	1493.54	1530.86	1376.23
3/11/13	1328.60	1360.11	1376.25	1322.58	1330.98	1348.51	1329.21	1339.71	1351.93	1495.04	1532.23	1376.08
6/25/13	1328.35	1359.97	1376.09	1322.06	1330.75	1346.75	1328.42	1339.44	1351.93	1494.24	1531.41	1375.74
12/16/13	1327.90	1359.90	1375.14	1321.98	1330.47	1346.31	1328.07	1339.51	1351.93	1493.14	1530.35	1375.74
3/24/14	1328.56	1359.82	1376.28	1321.60	1330.16	1350.27	1327.78	1338.77	1351.93	1492.50	1530.01	1375.81
9/15/14	1327.32	1359.75	1375.22	1322.28	1330.50	1350.69	1328.04	1339.40	1351.93	1491.45	1529.82	1375.15
12/15 & 23/2014	1328.09	1361.11	1377.00	1322.37	1331.15	1351.67	1327.54	1339.84	1351.93	1489.59	1529.65	1376.78
3/23/2015 6/15/2015	1327.90 1327.62	1360.06 1359.61	13/6.21 1376.41	1322.14 1322.01	1330.73 1330.60	1343.28 1341.30	1327.62 1327.44	1339.54 1339.46	1351.93 1351.93	1490.35 1489.18	1529.66 1531.29	1376.10 1376.27
9/28/2015	1327.21	1359.80	1376.39	1321.51	1330.63	1343.83	1327.03	1339.39	1351.93	1488.04	1531.43	1376.16
12/1/2015	1327.44	1365.63	1380.52	1321.70	1330.62	1343.12	1326.95 1327.25	1339.27	1351.93	1487.59 1488.36	1530.98	1379.81
6/20/2016	1327.59	1364.57	1370.46	1321.61	1330.65	1346.68	1327.17	1339.34	1351.93	1487.26	1530.03	1363.91
9/19/2016	1326.99	1349.42	1361.93	1321.41	1330.49	1347.86	1326.58	1339.32	1351.93	1486.82	1529.44	1349.20
3/13/2017	1327.56	1366.58	1379.19	1323.84	1329.99	1348.17	1328.52	1339.58	1351.93	1488.84	1528.98	1379.03
6/12/2017	1328.89	1366.17	1381.57	1322.81	1330.79	1350.37	1328.36	1339.61	1351.93	1498.36	1529.33	1378.88
9/18/2017 12/4/2017	1328.84 1329.13	1363.44 1363.00	1380.30 1379.93	1322.28 1322.26	1330.63 1330.47	1351.44 1349.88	1328.04 1327.83	1339.69 1339.45	1351.93 1351.93	1497.09 1496.02	1528.77 1527.80	1369.31 1368.50
3/12/18	1330.12	1363.30	1380.01	1321.95	1331.21	1349.87	1328.84	1339.52	1351.93	1496.41	1528.16	1368.10
6/12/18	1329.99	1364.45	1380.91	1322.54	1330.85	1345.51	1329.09	1339.67	1351.93	1496.36	1527.91	1368.23
5/18/18 12/10/18	1328.89	1363.20	1379.82	1323.08	1331.12	1344.06	1328./1	1340.02	1351.93	1494.97	1527.12	1367.98
3/25/19	1336.29	1364.76	1380.51	1326.20	1331.94	1348.48	1329.72	1340.35	1351.93	1502.53	1527.22	1368.63
6/24/19 9/9/19	1335.87 1334.12	1364.64 1364.30	1381.88 1381.60	1324.59 1324.09	1331.17 1330.94	1342.37 1341.34	1329.35 1331.26	1339.88 1339.68	1351.93 1351.93	1499.95 1498.49	1527.09 1526.92	1368.64 1368.55
12/2/19	1330.47	1363.49	1381.10	1323.69	1331.08	1341.48	1329.50	1340.18	1351.93	1497.41	1526.70	1368.49
2/17/20	1329.32	1363.45	1381.02	1323.35	1331.02	1341.21	1328.93	1340.10	1351.93	1497.84	1526.53	1368.47
9/21/20	1329.56	1363.37	1380.97	1322.95	1330.90	1341.39	1328.08	1340.10	1351.95	1498.09	1526.20	1368.60
12/21/20	1328.49	1363.47	1381.10	1322.92	1331.23	1340.93	1328.19	1340.51	1351.93	1496.84	1526.10	1368.64
3/4/21 5/17/21	1328.45	1363.28	1381.02 1381.05	1322.80	1330.99	1340.96	1328.07 1328.10	1340.12 1339.96	1351.93	1496.37 1495.85	1525.50	1368.54 1368.74

TABLE 5 GROUNDWATER ELEVATIONS AND SITE MONITORING WELL INFORMATION SUNSHINE CANYON LANDFILL

MSL = Mean Sea Level MSL = Mean Sea Level TOC = Top of Casing BOC = Bottom of Casing NA = Not Available NM = Not Measured All wells resurveyed in 2014, except for the following: PZ-1, PZ-3, & MW-8. Well CM-5R resurveyed in 2015 All wells resurveyed in 2014, except for the following: PZ-1, PZ-3, & MW-8. Well CM-5R resurveyed in 2015 * - Top of casing elevations are approximate. Wells MW-2A, MW-2B, and DW-4 were raised in September 2016 - survey pending.

Well Number	DW-5	PZ-1	PZ-2	PZ-3	PZ-4	CM-9R3	CM-10R	CM-11R	MW-8	CM-5	CM-5R
Well Casing Elevation (ft. MSL)	1347.54	1643.76	1566.52	2029.19	1795.85	1902.40	1901.20	2010.41	1362.37	1892.84	2032.00
Total Depth of Well (ft)	101.00	103.30	160.90	230.00	125.50	29.00	110.90	31.00	1502.57	60.00	60
Depth of Pump (ft)					122.00	27.40	100.00	29.80			
Well Diameter (in)	4	2	2	2	2	4	4	4		2	2
Type of Pump	Bladder		Bladder		Bladder	Bladder	Bladder	Bladder	Bladder		
Depth to Water (ft below TOC)											
3/9/12	NM	89.25	NM	215.42	110.79	12.15	NM	22.44	17.89	20.46	NM
3/28/12	14.96	NM	123.22	NM	NM	10.01	NM	23.45	NM	NM	NM
6/22/12	14.73	89.33	123.14	215.69	110.73	10.81	46.85	18.26	15.68	21.60	NM
9/18/12	15.03	NM	123.18	215.78	110.92	13.82	48.31	NM	13.80	22.03	NM
12/17/12	14.90	83.27	123.27	215.90	110.80	11.42	47.37	23.11	13.62	19.86	NM
3/11/13	14.26	89.81	123.02	NM	110.11	9.89	47.57	21.02	15.32	17.39	NM
6/25/13	14.04	90.10	122.92	NIVI	110.23	13.29	48.70	22.62	16.41	19.16	NIVI
9/10/13	14.23	90.52	122.82	NM	110.10	17.00	49.15	24.51	16.40	19.50	NIVI
3/24/14	14.25	90.63	122.54	NM	110.10	12.58	49.81	20.88	14.41	18.08	NM
6/9/14	19.14	90.62	122.57	NM	110.37	15.41	50.26	21.90	15.23	19.34	NM
9/15/14	14.47	90.81	122.54	NM	110.46	17.95	50.69	23.54	13.39	20.61	NM
12/15 & 23/2014	14.43	90.81	122.68	NM	110.70	9.59	50.14	23.32	13.74	NM	NM
3/23/15	14.61	91.45	122.71	216.12	110.88	12.92	51.37	19.71	18.03	ABANDONED	198.53
6/15/15	14.44	91.48	122.52	216.42	110.93	16.14	51.55	22.10	18.61	ABANDONED	201.10
9/28/15	14.53	91.82	122.50	217.06	111.14	17.56	51.98	24.40	17.68	ABANDONED	202.46
12/1/15	14.78	92.05	122.67	217.53	111.30	18.87	52.38	26.09	18.18	ABANDONED	204.25
3/28/16	14.39	91.84	122.38	217.74	111.23	12.06	52.41	20.47	18.20	ABANDONED	206.39
6/20/16	14.36	91.97	122.44	218.20	111.56	15.41	52.81	22.39	18.04	ABANDONED	208.15
5/19/16 12/10/16	15.02	92.25	122.34	216.70	112.01	10.01	52.04	27.29	16.13		210.04
3/13/17	14 96	92.59	122.01	219.15	111 20	7 96	J2.94 48 77	12 12	15 27		211.30
6/12/17	14.62	92.46	122.37	219.63	111.69	10.55	49.51	15.98	14.46	ABANDONED	213.66
9/18/17	14.56	92.52	122.38	220.08	111.66	13.02	50.14	17.67	13.30	ABANDONED	214.90
12/4/17	14.82	92.92	122.54	220.37	111.81	14.34	50.76	19.66	14.32	ABANDONED	215.90
3/12/18	14.25	93.04	122.34	221.53	111.77	9.62	47.46	13.69	15.03	ABANDONED	216.91
6/12/18	14.02	92.97	122.17	221.04	111.43	11.47	49.55	16.16	16.07	ABANDONED	NM
9/18/18	14.23	93.07	122.13	221.53	111.70	13.39	50.48	18.23	17.28	ABANDONED	NM
12/10/18	14.01	93.44	122.39	221.92	111.94	10.18	49.70	19.11	16.42	ABANDONED	220.28
3/25/19	13.84	93.62	122.17	222.04	111.58	8.69	46.18	10.99	12.96	ABANDONED	220.60
6/24/19	13.42	93.42	121.99	222.24	111.24	10.24	47.16	15.93	16.05	ABANDONED	221.36
9/9/19	13.34	93.47	122.02	222.47	110.80	11.88	47.91	18.59	17.53	ABANDONED	221.72
2/17/20	13.25	93.68	121.79	222.74	110.68	11.53	46.43	21.41	17.68	ABANDONED	222.43
6/22/20	13.28	93.73	121.49	222.88	110.03	0.05	48.09	15.04	17.30	ABANDONED	222.77
9/21/20	13.15	94.07	121.25	223.15	110.31	12 02	48.23	17.98	17.47	ABANDONED	223.50
12/21/20	13.43	94.09	120.93	223.58	110.02	13.02	48.88	19.88	17.71	ABANDONED	224.26
3/4/21	13.55	94.38	120.70	223.94	110.27	12.43	49.13	20.46	17.55	ABANDONED	224.88
5/17/21	13.28	94.48	120.59	223.93	110.21	13.63	49.39	22.35	16.02	ABANDONED	225.25
Liquid Elevation (ft, MSL)											
3/9/12	NM	1554.51	NM	1813.77	1685.06	1890.25	NM	1987.97	1344.48	1872.38	NM
3/28/12	1332.58	NM	1443.30	NM	NM	1892.39	NM	1986.96	NM	NM	NM
6/22/12	1332.81	1554.43	1443.38	1813.50	1685.12	1891.59	1854.35	1992.15	1346.69	1871.24	NM
9/18/12	1332.51	NM 4560.40	1443.34	1813.41	1684.93	1888.58	1852.89	NM	1348.57	18/0.81	NM
2/11/12	1332.04	1560.49	1443.25	1813.29	1685.05	1890.98	1853.83	1987.30	1348.75	1872.98	NIVI
6/25/13	1333.28	1553.66	1443.50	NM	1685.62	1892.51	1852.50	1985.35	1347.05	1873.43	NM
9/16/13	1333.55	1553.79	1443.70	NM	1685.75	1887.10	1852.07	1986.10	1345.91	1873.34	NM
12/16/13	1333.31	1553.24	1443.58	NM	1685.67	1885.31	1851.84	1984.85	1345.93	1874.22	NM
3/24/14	1332.66	1553.13	1443.71	NM	1685.47	1889.82	1851.39	1989.53	1347.96	1874.76	NM
6/9/14	1328.40	1553.14	1443.95	NM	1685.48	1886.99	1850.94	1988.51	1347.14	1873.50	NM
9/15/14	1333.07	1552.95	1443.98	NM	1685.39	1884.45	1850.51	1986.87	1348.98	1872.23	NM
12/15 & 23/2014	1333.11	1552.95	1443.84	NM	1685.15	1892.81	1851.06	1987.09	1348.63	NM	NM
3/23/2015	1332.93	1552.31	1443.81	1813.07	1684.97	1889.48	1849.83	1990.70	1344.34	ABANDONED	1833.47
6/15/2015	1333.10	1552.28	1444.00	1812.77	1684.92	1886.26	1849.65	1988.31	1343.76	ABANDONED	1830.9
9/28/2015	1333.01	1551.94	1444.02	1812.13	1684./1	1002 52	1849.22	1986.01	1344.69	ABANDONED	1829.54
3/28/2016	1332.70	1551./1	1443.85	1811 /5	1684.55	1800 24	1840.02	1980.04	1344.19		1825 61
5/26/2016	1222.10	1551.92	1444.14	1811.45	1684.02	1890.54	1040.79	1989.94	1344.17		1023.01
9/19/2016	1332 52	1551.75	1444.08	1810.55	1684.13	1884 60	1847 32	1983 12	1346.24	ABANDONED	1821.96
12/19/2016	1332.48	1551.37	1443.91	1810.06	1683.84	1882.49	1848.26	1981.87	1346.34	ABANDONED	1820.64
3/13/2017	1332.68	1551.13	1444.15	1809.85	1683.96	1894.44	1852.48	1998.28	1347.00	ABANDONED	1819.51
6/12/2017	1332.92	1551.30	1444.15	1809.56	1684.16	1891.85	1851.69	1994.43	1347.91	ABANDONED	1818.34
9/18/2017	1332.98	1551.24	1444.14	1809.11	1684.19	1889.38	1851.06	1992.74	1349.07	ABANDONED	1817.1
12/4/2017	1332.72	1550.84	1443.98	1808.82	1684.04	1888.06	1850.44	1990.75	1348.05	ABANDONED	1816.1
3/12/18	1333.29	1550.72	1444.18	1807.66	1684.08	1892.78	1853.74	1996.72	1347.34	ABANDONED	1815.09
6/12/18	1333.52	1550.79	1444.35	1808.15	1684.42	1890.93	1851.65	1994.25	1346.30	ABANDONED	NM
9/18/18	1333.31	1550.69	1444.39	1807.66	1684.15	1889.01	1850.72	1992.18	1345.09	ABANDONED	NM
12/10/18	1333.53	1550.32	1444.13	1807.27	1683.91	1892.22	1851.50	1991.30	1345.95	ABANDONED	1811.72
3/25/19	1333.70	1550.14	1444.35	1807.15	1684.27	1893.71	1855.02	1999.42	1349.41	ABANDONED	1811.40
6/24/19	1334.12	1550.34	1444.53	1806.95	1684.61	1892.16	1854.04	1994.48	1346.32	ABANDONED	1810.64
9/9/19 12/2/10	1334.20	1550.29	1444.50	1806.45	1605.05	1890.52	1853.29	1991.82	1344.84	ABANDONED	1810.28
2/17/20	1334.29	1550.08	1444./3	1804 21	1685 22	1801 75	1852 11	1969.00	13// 01		1800 22
6/22/20	1334.20	1540 02	1445.05	1806.00	1685 34	1892 / 2	1852 91	1994.57	1344.01		1808 //
9/21/20	1334.31	1549.69	1445 41	1805.63	1685.62	1890 38	1852 97	1997 43	1344.90	ABANDONED	1808.03
12/21/20	1334.11	1549.67	1445.59	1805.61	1685.83	1889.38	1852.32	1990.53	1344.66	ABANDONED	1807.74
3/4/21	1333.99	1549.38	1445.82	1805.25	1685.58	1889.97	1852.07	1989.95	1344.82	ABANDONED	1807.12
5/17/21	1334.26	1549.28	1445.93	1805.26	1685.64	1888.77	1851.81	1988.06	1346.35	ABANDONED	1806.75

TABLE 5, CONTINUED GROUNDWATER ELEVATIONS AND SITE MONITORING WELL INFORMATION SUNSHINE CANYON LANDFILL

Note: MSL = Mean Sea Level TOC = Top of Casing BOC = Bottom of Casing NA = Not Available NM = Not Measured All wells resurveyed in 2014, except for the following: PZ-1, PZ-3, & MW-8. Well CM-5R resurveyed in 2015

TABLE 6A SUMMARY OF GROUNDWATER ANALYTICAL RESULTS -FIRST QUARTER 2021 SUNSHINE CANYON LANDFILL

BACKGROUND WELLS				NELLS	SHALLOW MONITORING WELLS						DEEP MONITORING WELLS						Maximum			
Analyte	Units	CM-9R3	CM-11R	CM-10R	MW-1	MW-2A**	MW-5	MW-6	MW-9**	MW-13R	MW-14	DW-1	DW-2	DW-3	DW-4**	DW-5	MW-2B**	PZ-2	PZ-4	Contaminant
		03/09/21	03/04/21	03/04/21	03/10/21	03/08/21	03/09/21	03/08/21	03/09/21	03/09/21	03/08/21	03/08/21	03/09/21	03/10/21	03/08/21	03/10/21	03/08/21	03/09/21	03/09/21	Level
Inorganic Monitoring Parameters:																				
Alkalinity, total	mg/L	230	42	430	460	370	480	460	650	710	310	530	360	150	330	890	320	360	330	NV
Ammonia-Nitrogen	mg/L	6.8	2.6	11	6.2	3.5	4.6	0.98	3.9	6.9	0.10	2.3	3.6	0.64	4.7	0.34	3.8	3.6	2.7	NV
Chemical Oxygen Demand	mg/L	16j	10	10	50	10	47	10	54	200	10	10	10	10	10	10	10	10 1	10	NV
Chloride	mg/L	14	9.9	8.7	160	31	280	35	210	98	23	14	11	14	13	19	13	13	8.9	500(2)
Total Dissolved Solids	mg/L	4300	3200	2500	2700	2800	3000	3400	3800	1300	3300	3300	2000	1800	3000	1100	2700	4000	1200	1000(2)
Total Organic Carbon	mg/L	8.1	5.2	4.0	22	4.0	17	5.2	26	21	4.5	3.6	1.9	0.57	1.9	8.7	1.8	2.7	1.5	NV
Metals:																				
Potassium, total	mg/L	13	8.5	10	36	6.2	22	5.6	17	22	8.7	3.0	4.1	8.4	4.7	0.89	4.7	2.5	4.1	NV
Volatile and Semivolatile Organic Compounds:																				
cis-1,2-Dichloroethene	μg/L	0.30	0.30	0.30	0.30	0.30 0).30	0.30	0.34j	24	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30 ().30	6(1)-70(3)
1,4-Dioxane	μg/L	0.34	0.34	0.34	13	1.8	4.7	0.34	50	7.8	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34 ().34	NV
Methyl tert-butyl ether	μg/L	0.21	0.21	0.21	0.21	0.21 0).21	0.21	0.44j	16	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21 ().21	13(1)/5(2)
Tetrahydrofuran	μg/L	1.1	1.1	1.1	1.1	1.1	1.1	1.1	6.3	85	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1 1	.1	NV

Notes:

(1) State of California Primary Drinking Water Standard

(2) State of California Secondary Drinking Water Standard

(3) Federal Maximum Contaminant Level

(j) Indicates a trace concentration between the Method Detection Limit and the Practical Quantitation Limit.

* - Analyte also detected in a blank sample at a similar concentration.

** - Corrective Action Evalaution Monitoring Well. 0.25

Analyte was not detected. Value listed is the Method Detection Limit.

Analyte concentration exceeds ARAR value. 2500

TABLE 6B SUMMARY OF GROUNDWATER ANALYTICAL RESULTS -SECOND QUARTER 2021 SUNSHINE CANYON LANDFILL

Analyte		BACK	GROUND	WELLS			SHAL	LOW MONITO	RING WELLS						[DEEP MONI	TORING WE	LLS			Maximum
Analyte	Units	CM-9R3	CM-11R	CM-10R	MW-1	MW-2A**	MW-	5 MW-6	MW-9**	MW-13F	MW-14	4 D	DW-1	DW-2	DW-3	DW-4**	DW-5	MW-2B**	PZ-2	PZ-4	Contaminant
		05/19/21	05/19/21	05/19/21	05/19/21	05/18/21	05/20/2	21 05/17/21	05/17/21	05/17/21	05/17/2	1 05,	/17/21 0	05/18/21	05/18/21	05/18/21	05/19/21	05/18/21	05/17/21	05/18/21	Level
Inorganic Monitoring Parameters:	-				-																_
Alkalinity, total	mg/L	180	34	490	490	360		450 4	50 790	74	0 3	310	540	340	140	340	910	330	340	33	0 NV
Alkalinity, bicarbonate	mg/L	180	34	490	490	360		450 4	50 790	74	0 3	310	350	340	140	340	870	330	320	33	0 NV
Ammonia-Nitrogen	mg/L	4.2	1.1	. 10	6.4	3.1		4.0 0.5	93 3.7	, 5	9 0.10		1.8	3.3	0.69	4.4	0.28	3.4	3.1	. 2.	3 NV
Bromide	mg/L	0.26j	0.24	0.24	2.3	0.48		3.2 0.9	3j 4.0	0.9	6 0	.58 1.2		0.35j C	.24	0.48	0.24	0.48	2.4	0.24	NV
Carbon Dioxide, free	mg/L	86	8.8	3 100	170	120		79	55 180	5	.3	35 2.0		30	14	32	11	. 26	2.0	4	6 NV
Chemical Oxygen Demand	mg/L	10	10	20	73	20		36 10	96	14	0 10	10		27	14j	10	10	10	10	10	5j NV
Chloride	mg/L	15	10	10	180	21		270	36 280		6	23	14	12	15	13	19	14	12	9.	3 500(2)
Fluoride	mg/L	1.8	0.66	i 1.2	2.2	0.97j		2.1 1	.1 0.41	j 0.3	9j	1.0	2.3j	0.33j	0.31j	0.40	3.1	0.76	2.0	1.	0 2(1)-4(3)
Nitrate-Nitrogen	mg/L	0.35	1.2	0.055	0.055	0.11	0.055	0.11	0.11	0.11	0	.36 0.28	0.0	055 C	.11	0.11	0.055	0.11	0.55	0.055	10(1,3)
Sulfate	mg/L	2600	2100	1400	1700	1600	1	1500 20	00 1700	23	0 19	900	1500	1100	1200	1800	0.25	1600	2600	55	0 500(2)
Sulfide, total	mg/L	0.027	0.027	3.4	0.027	0.027	0.027	g	.9 0.027		5 0.027	0.02	7 0.0	027 C	.027	0.027	0.041j	0.027	0.027	0.027	NV
Total Dissolved Solids	mg/L	4100	3300	2400	3200	2600	3	3100 34	00 4100	13	0 31	100	2600	1900	1900	2900	1100	2500	3900	120	0 1000(2)
Total Organic Carbon	mg/L	8.5	6.5	7.1	29	3.0		18 6	.3 32		0	4.5	3.8	1.5	0.41	1.8	7.0	1.8	2.3	1.	1 NV
Metals:						-				•									-		
Boron	mg/L	1.8	1.2	0.83	0.80	0.57		1.0 0.	77 1.1	. 0.8	5 0	.33	2.0	0.55	0.051	0.58	2.5	0.57	1.4	0.1	5 NV
Calcium	mg/L	360	230	230	400	210		370 3	30 470	1	.0 4	410	64	98	290	170	5.2	180	22	13	0 NV
Iron	mg/L	4.2	0.058	j 0.089j	53	6.4		32 0.	47 33	0.1	2 0.050		43	1.5	0.53	1.4	0.10	2.1	0.050	1.	2 0.3(2)
Magnesium	mg/L	220	140	190	190	120		160 2	10 260	1	.0 1	170	8.1	69	100	120	0.87	110	20) 7	7 NV
Manganese	mg/L	2.4	2.8	0.32	2.4	0.73		4.0 0.	98 6.1	. 0. :	.6	3.9	0.96	0.14	0.061	0.11	0.094	0.13	0.043	0.1	3 0.05(2)
Potassium, total	mg/L	12	9.3	10	38	5.2		22 5	.6 18		4	8.1	7.3	3.8	8.3	3.9	0.67	4.1	1.3	4.	1 NV
Sodium	mg/L	420	460	170	210	380		300 3	40 360	1	0 2	220	860	390	65	450	420	420	1300	8	4 NV
Volatile and Semivolatile Organic Compounds:							•	·					·								-
t-Butanol	μg/L	4.0	4.0	4.0	9.6	4.0	4.0	4.0	40	4.0	4.0	4.0	4.0	0 4	.0	4.0	4.1j	4.0	4.0	4.0	NV
1,4-Dichlorobenzene	μg/L	0.22	0.22	0.22	0.22	0.22	0.22	0.25	0.41	0.22	0.22	0.22	0.2	22 0	.22	0.22	0.22	0.22	0.22	0.22	NV
cis-1,2-Dichloroethene	μg/L	0.30	0.30	0.30	0.30	0.30	0.30	0.30	1.4	0.30	0.30	0.30	0.3	30 C	.30	0.30	0.30	0.30	0.30	0.30	6(1)-70(3)
1,4-Dioxane	μg/L	0.34	0.34	0.34	17	1.5		4.2 0.34	54	. 7	.3 0.34	0.34	0.3	34 C	.34	0.34	0.34	0.34	0.34	0.34	NV
Methyl tert-butyl ether	μg/L	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.43	0.21	0.21	0.21	0.2	21 0	.21	0.21	0.21	0.21	0.21	0.21	13(1)/5(2)
Tetrahydrofuran	μg/L	1.1	1.1	1.1	1.7	1.1	1.1	1.1	11	1.1	1.1	1.1	1.1	1 1	1	1.1	1.1	1.1	1.1	1.1	NV
Netos																					

Notes:

(1) State of California Primary Drinking Water Standard

(2) State of California Secondary Drinking Water Standard

(3) Federal Maximum Contaminant Level

(j) Indicates a trace concentration between the Method Detection Limit and the Practical Quantitation Limit.

* - Analyte also detected in a blank sample at a similar concentration.

** - Corrective Action Evalaution Monitoring Well.

0.25

Analyte was not detected. Value listed is the Method Detection Limit.

2500 Analyte concentration exceeds ARAR value.

TABLE 7ACOMPARISON OF INTRAWELL WATER QUALITY PROTECTION STANDARDS TO ANALYTICAL RESULTS - FIRST QUARTER 2021SUNSHINE CANYON LANDFILL

												WE	LL	-									
Analyte	Unite	MM	/-1	M١	N-5	M۱	N-6	MW	'-13R	MM	/-14	D٧	V-1	DV	V-2	DV	V-3	D١	N-5	PZ	2-2	PZ	<u>'</u> -4
Analyte	Onits	3/10/	2021	3/9/	2021	3/8/	2021	3/9/	2021	3/8/	2021	3/8/	2021	3/9/	2021	3/10	/2021	3/10	/2021	3/9/	2021	3/9/3	2021
		Result	WQPS	Result	WQPS	Result	WQPS	Result	WQPS	Result	WQPS	Result	WQPS	Result	WQPS	Result	WQPS	Result	WQPS	Result	WQPS	Result	WQPS
Inorganic Monitoring Paramo	eters:																						
Alkalinity	mg/L	460	844.76	480	727.34	460	571.59	710	972.24	310	587.83	530	658.76	360	410.47	150	162.81	890	1009.98	360	411.93	330	341.13
Ammonia-Nitrogen	mg/L	6.2	10.634	4.6	5.714	0.98	1.337	6.9	7.732	0.10	0.5703	2.3	2.4	3.6	4.308	0.64	0.7564	0.34	0.3918	3.6	3.598	2.7	2.976
Chemical Oxygen Demand	mg/L	50	202.056	47	135.7	10	75.338	200	407.58	10	54.674	10	49.801	10	52.743	10	15.206	10	76.47	10	26.386	10	24.85
Chloride	mg/L	160	408.469	280	469.603	35	70.829	98	213.802	23	88.987	14	17.737	11	15.462	14	17.534	19	101.838	13	16.398	8.9	11.706
Potassium, total	mg/L	36	54.763	22	34.393	5.6	10.679	22	27.224	8.7	12.508	3.0	3.838	4.1	6.183	8.4	12.357	0.89	5.262	2.5	4.693	4.1	5.643
Total Dissolved Solids	mg/L	2700	4495	3000	4614.2	3400	4486.5	1300	3450.9	3300	5128.5	3300	3600.2	2000	2178.3	1800	2313.1	1100	1417.3	4000	4403.2	1200	1529.5
Total Organic Carbon	mg/L	22	75.928	17	50.696	5.2	15.408	21	54.233	4.5	13.006	3.6	9.947	1.9	3.499	0.57	2.115	8.7	11.745	2.7	2.887	1.5	2.085
Volatile Organic Compounds	: (The WQPS	is the PQL for	any single VC	OC detected	or two or mo	re detection	s between th	ne MDL and F	PQL.)														
1,4-Dioxane	μg/L	13	0.50	4.7	0.50	0.34	0.50	7.8	0.50	0.34	0.50	0.34	0.50	0.34	0.50	0.34	0.50	0.34	0.50	0.34	0.50	0.34	0.50

Notes:

(j) Indicates a trace concentration between the Method Detection Limit and the Practical Quantitation Limit.

ND: Analyte was not detected. Detection limit is unknown.

Analyte was not detected. Value listed is the Method Detection Limit.

2500 Analyte conce

Analyte concentration exceeds intrawell WQPS.

TABLE 7BCOMPARISON OF INTRAWELL WATER QUALITY PROTECTION STANDARDS TO ANALYTICAL RESULTS - SECOND QUARTER 2021SUNSHINE CANYON LANDFILL

												WE	LL	-									
Analyte	Units	MM	/-1	M	N-5	MV	V-6	MW	/-13R	MM	/-14	DV	V-1	DV	V-2	DV	V-3	DV	V-5	PZ	2-2	PZ	<u>2</u> -4
Analyte	Onits	5/19/	2021	5/20,	/2021	5/17,	/2021	5/17	/2021	5/17,	/2021	5/17	/2021	5/18,	/2021	5/18,	/2021	5/19	/2021	5/17	/2021	5/18/	/2021
		Result	WQPS	Result	WQPS	Result	WQPS	Result	WQPS	Result	WQPS	Result	WQPS	Result	WQPS	Result	WQPS	Result	WQPS	Result	WQPS	Result	WQPS
Inorganic Monitoring Param	eters:																						
Alkalinity	mg/L	490	844.76	450	727.34	460	571.59	740	972.24	310	587.83	540	658.76	340	410.47	140	162.81	910	1009.98	340	411.93	330	341.13
Ammonia-Nitrogen	mg/L	6.4	10.634	4.0	5.714	0.93	1.337	5.9	7.732	0.10	0.5703	1.8	2.4	3.3	4.308	0.69	0.7564	0.28	0.3918	3.1	3.598	2.3	2.976
Chemical Oxygen Demand	mg/L	73	202.056	36	135.7	10	75.338	140	407.58	10	54.674	10	49.801	27	52.743	14j	15.206	10	76.47	10	26.386	16j	24.85
Chloride	mg/L	180	408.469	270	469.603	36	70.829	86	213.802	23	88.987	14	17.737	12	15.462	15	17.534	19	101.838	12	16.398	9.3	11.706
Potassium, total	mg/L	38	54.763	22	34.393	5.6	10.679	24	27.224	8.1	12.508	7.3	3.838	3.8	6.183	8.3	12.357	0.67	5.262	1.3	4.693	4.1	5.643
Total Dissolved Solids	mg/L	3200	4495	3100	4614.2	3400	4486.5	1300	3450.9	3100	5128.5	2600	3600.2	1900	2178.3	1900	2313.1	1100	1417.3	3900	4403.2	1200	1529.5
Total Organic Carbon	mg/L	29	75.928	18	50.696	6.3	15.408	20	54.233	4.5	13.006	3.8	9.947	1.5	3.499	0.41	2.115	7.0	11.745	2.3	2.887	1.1	2.085
Volatile Organic Compounds	: (The WQPS	is the PQL for	any single VC	OC detected o	or two or mo	re detection	s between th	e MDL and I	PQL.)														
t-Butanol	μg/L	9.6	5.0	4.0	5.0	4.0	5.0	320	400	4.0	5.0	4.0	5.0	4.0	5.0	4.0	5.0	4.1	5.0	4.0	5.0	4.0	5.0
1,4-Dioxane	μg/L	17	0.50	4.2	0.50	0.34	0.50	7.3	0.50	0.34	0.50	0.34	0.50	0.34	0.50	0.34	0.50	0.34	0.50	0.34	0.50	0.34	0.50
Tetrahydrofuran	μg/L	1.7j	8.0	1.1	2.0	1.1	2.0	1.1	2.0	1.1	2.0	1.1	2.0	1.1	2.0	1.1	2.0	1.1	2.0	1.1	2.0	1.1	2.0

Notes:

(j) Indicates a trace concentration between the Method Detection Limit and the Practical Quantitation Limit.

ND: Analyte was not detected. Detection limit is unknown.

Analyte was not detected. Value listed is the Method Detection Limit.

Analyte concentration exceeds intrawell WQPS.

TABLE 8A SUMMARY OF ANALYTICAL RESULTS FOR VADOSE ZONE LIQUID MONITORING POINTS FIRST QUARTER 2021 SUNSHINE CANYON LANDFILL

		SUBDRAIN N	IONITORING			
		POI	NTS	LYSIN	IETERS	N A a a i a a a a
Analyte	Units		Combined			
		Subdrain N	Subdrains	LY-6	LY-7	Contaminant Level
		3/4/2021	3/4/2021	3/4/2021	3/4/2021	
Field Parameters:	<u>.</u>					
Electrical Conductivity	mS/cm	3.20	2.88	Dry	4.64	NV
Oxidation Reduction Potential	mV	-78	-51	Dry	-54	NV
Oxygen, dissolved	mg/L	0.68	1.78	Dry	1.79	NV
рН	Units	5.79	5.96	Dry	6.43	6.5-8.5(2)
Temperature	°C	17.51	17.73	Dry	29.40	NV
Turbidity	NTU	29.2	127	Dry	0.1	5(2)
General Chemistry Parameters:		-	•			-
Alkalinity, total	mg/L	700	460	Dry	2200	NV
Ammonia-Nitrogen	mg/L	27	12	Dry	23	NV
Chemical Oxygen Demand	mg/L	61	66	Dry	160	NV
Chloride	mg/L	190	240	Dry	500	500(2)
Total Dissolved Solids	mg/L	3300	2900	Dry	3400	1000(2)
Total Organic Carbon	mg/L	57	35	Dry	60	NV
Metals			•		-	
Potassium	mg/L	27	19	Dry	39	NV
Volatile and Semivolatile Organic Com	npounds:					
Acetone	μg/L	8.0	160	Dry	8.0	NV
Benzene	μg/L	0.53	0.27	Dry	0.61j	1(1)-5(3)
Carbon Disulfide	μg/L	0.49	0.30j	Dry	0.49	NV
t-Butanol	μg/L	150	99	Dry	500	NV
2-Butanone	μg/L	6.1	170	Dry	6.1	NV
cis-1,2-Dichloroethene	μg/L	0.60	2.4	Dry	2.3	6(1)-70(3)
1,4-Dichlorobenzene	μg/L	2.5	5.7	Dry	1.5	5(1)-75(3)
1,4-Dioxane	μg/L	24	31	Dry	24	NV
Ethylbenzene	μg/L	0.71	2.4	Dry	0.71	300(1)
Methyl tert-butyl ether	μg/L	0.64j	0.21	Dry	2.5	13(1)/5(2)
Naphthalene	μg/L	0.64	3.1	Dry	0.64	NV
Styrene	μg/L	0.55	0.92	Dry	0.55	100(1,3)
m,p-Xylene	μg/L	1.60	4.1	Dry	1.60	1750(1)-10,000(3)
o-Xylene	μg/L	0.70	1.9	Dry	0.70	1750(1)-10,000(3)
Tetrachlorothene	μg/L	0.58	0.51	Dry	0.58	1750(1)-10,000(3)
Tetrahydrofuran	μg/L	5.0	4.7	Dry	2.1	NV
Trichloroethene	μg/L	0.58	0.56	Dry	0.58	5(1,3)
Toluene	μg/L	0.66	1.0	Dry	0.66	150(1)-1000(3)

Notes:

0.25

(1) State of California Primary Drinking Water Standard

(2) State of California Secondary Drinking Water Standard

(3) Federal Maximum Contaminant Level

(j) Indicates a trace concentration between the Method Detection Limit and the Practical Quantitation Limit.

NV: No ARAR value.

NS: Not Sampled.

173

2500

ND: Analyte was not detected. Detection limit is unknown.

* - Analyte also detected in a blank sample at a similar concentration.

Analyte was not detected. Value listed is the Method Detection Limit.

Analyte was detected.

Analyte concentration exceeds ARAR value.

TABLE 8B SUMMARY OF ANALYTICAL RESULTS FOR VADOSE ZONE LIQUID MONITORING POINTS SECOND QUARTER 2021 SUNSHINE CANYON LANDFILL

		SUBDRAIN N	IONITORING			
		POI	NTS	LYSIM	ETERS	Maximum
Analyte	Units		Combined		-	Contaminant
-		Subdrain N	Subdrains	LY-6	LY-7	Level
		5/17/2021	5/18/2021	5/19/2021	5/18/2021	
Field Parameters:						
Electrical Conductivity	mS/cm	4.14	3.97	Drv	5.49	NV
Oxidation Reduction Potential	mV	-70	-303	Dry	-31	NV
Oxygen, dissolved	mg/L	0.00	0.00	Dry	3.41	NV
pH	Units	5.91	6.92	Dry	7.16	6.5-8.5(2)
Temperature	°C	18.44	19.48	Dry	22.77	NV
Turbidity	NTU	47.9	137	Dry	2.5	5(2)
General Chemistry Parameters:						
Alkalinity, total	mg/L	970	1300	Drv	2200	NV
Alkalinity, bicarbonate	mg/L	970	1300	Drv	2200	NV
Ammonia-Nitrogen	mg/L	39	71	Drv	24	NV
Bromide	mg/L	2.1j	1.6	Dry	3.6	NV
Carbon dioxide	mg/L	190	370	Dry	250	NV
Chemical Oxygen Demand	mg/L	250	360	Dry	170	NV
Chloride	mg/L	170	140	Dry	510	500(2)
Fluoride	mg/L	1.4j	2.2	Dry	1.0	2(1)-4(3)
Nitrate as Nitrogen	mg/L	0.28	0.11	Dry	0.28	10(1,3)
Sulfate	mg/L	1500	900	Dry	350	500(2)
Sulfide, total	mg/L	0.027	130	Dry	0.027	NV
Total Dissolved Solids	mg/L	3600	2900	Dry	3700	1000(2)
Total Organic Carbon	mg/L	91	91	Dry	71	NV
Metals						
Boron	mg/L	1.1	0.84	Dry	6.6	NV
Calcium	mg/L	370	320	Dry	180	NV
Iron	mg/L	210	9.6	Dry	0.78	0.3(2)
Magnesium	mg/L	220	230	Dry	160	NV
Manganese	mg/L	1.7	3.7	Dry	2.0	0.05(2)
Potassium	mg/L	26	19	Dry	37	NV
Sodium	mg/L	270	210	Dry	870	NV
Volatile and Semivolatile Organic Con	npounds:					
Acetone	μg/L	11j*	4.0	Dry	8.0	NV
Benzene	μg/L	0.53	0.27	Dry	0.61j	1(1)-5(3)
Chlorobenzene	μg/L	0.48	0.33j	Dry	0.48	70(1)-100(3)
t-Butanol	μg/L	27	20	Dry	460	NV
cis-1,2-Dichloroethene	μg/L	0.60	1.3	Dry	2.2	6(1)-70(3)
1,4-Dichlorobenzene	μg/L	1.2	15	Dry	1.6	5(1)-75(3)
1,4-Dioxane	μg/L	22	18	Dry	25	NV
Ethylbenzene	μg/L	0.71	8.9	Dry	0.71	300(1)
Methyl tert-butyl ether	μg/L	0.50j	0.21	Dry	2.6	13(1)/5(2)
Naphthalene	μg/L	0.64	11	Dry	0.64	NV
Styrene	μg/L	0.55	1.0	Dry	0.55	100(1,3)
m,p-Xylene	μg/L	1.60	11	Dry	1.60	1750(1)-10,000(3)
o-Xylene	μg/L	0.70	6.5	Dry	0.70	1750(1)-10,000(3)
Tetrachlorothene	μg/L	0.58	0.42j	Dry	0.58	1750(1)-10,000(3)
Tetrahydrofuran	μg/L	6.9*	4.2	Dry	2.1	NV
Toluene	110/1	0.66	2.4	Dry	0.66	150(1)-1000(3)

Notes:

(1) State of California Primary Drinking Water Standard

(2) State of California Secondary Drinking Water Standard

(3) Federal Maximum Contaminant Level

(j) Indicates a trace concentration between the Method Detection Limit and the Practical Quantitation Limit.

NV: No ARAR value.

NS: Not Sampled.

ND: Analyte was not detected. Detection limit is unknown.

* - Analyte also detected in a blank sample at a similar concentration.

Analyte was not detected. Value listed is the Method Detection Limit.

173 Analyte was detected.

173 2500

0.25

Analyte concentration exceeds ARAR value.

TABLE 9 SUMMARY OF METHANE CONCENTRATIONS FOR VADOSE ZONE GAS MONITORING POINTS FIRST SEMIANNUAL 2021 MONITORING PERIOD SUNSHINE CANYON LANDFILL

Probe ID	Interval	Depth (ft bgs)	1/19/2021 - 1/21/2021	2/15/2021 - 2/18/2021	3/23/2021 - 3/25/2021	4/20/2021 - 4/29/2021	5/25/2021 - 5/27/2021	6/22/2021 - 6/24/2021
	Α	10-15	1/ 11/ 2021	2/ 10/ 2021	3/ 23/ 2022	4/25/2022	5/2//2022	0/2-1/2022
P-202	В	25-30			Removed Due	to Construction		
	С	40-45						
	А	10-15	0.1	0.0	0.0	0.0	0.0	0.0
P-202R	В	25-30	0.1	0.0	0.0	0.0	0.0	0.0
	С	40-45	0.1	0.0	0.0	0.0	0.0	0.0
	А	10-15	0.1	0.0	0.0	0.0	0.0	0.0
P-203	В	25-30	0.1	0.0	0.0	0.0	0.0	0.0
	С	40-45	0.1	0.0	0.0	0.0	0.0	0.0
	А	6-11	0.1	0.0	0.0	0.0	0.0	0.0
	В	20-25	0.1	0.0	0.0	0.1	0.0	0.0
P-205R	С	33-38	1.4	0.7	1.0	0.6	1.5	0.5
	D	48-53	1.9	1.0	2.0	1.7	2.3	2.0
	E	62-67	0.2	0.0	0.0	0.0	0.0	0.0
	А	10-15	0.0	0.0	0.0	0.0	0.0	0.0
P-206	В	25-30	0.0	0.0	0.0	0.0	0.0	0.0
	С	40-45	0.0	0.0	0.0	0.0	0.0	0.0
	А	10-15	0.1	0.0	0.0	0.1	0.2	0.0
P-207	В	25-30	0.0	0.0	0.0	0.0	0.2	0.0
	С	40-45	0.0	0.0	0.1	0.0	0.2	0.0
	А	10-15	0.0	0.0	0.0	0.0	0.0	0.0
P-208	В	25-30	0.0	0.0	0.0	0.0	0.0	0.0
	С	40-45	0.0	0.0	0.0	0.0	0.0	0.0
	А	10-15	0.0	0.0	0.0	0.0	0.0	0.0
P-210	В	25-30	0.0	0.0	0.0	0.0	0.0	0.0
	С	40-45	0.0	0.0	0.0	0.0	0.0	0.0
	А	7-15	0.0	0.0	0.0	0.0	0.0	0.0
	В	23-31	0.0	0.0	0.0	0.0	0.0	0.0
P-213	С	39-47	0.1	0.0	0.0	0.0	0.0	0.0
	D	55-62	0.0	0.0	0.0	0.0	0.0	0.0
	E	71-80	0.0	0.0	0.0	0.0	0.0	0.0
	А	7-16	0.0	0.0	0.0	0.0	0.0	0.1
P-214	В	23-32	0.0	0.0	0.0	0.0	0.0	0.0
	С	42-51	0.0	0.0	0.0	0.0	0.0	0.0
	А	7-14	0.0	0.0	0.0	0.0	0.0	0.0
	В	24-31	0.0	0.0	0.0	0.0	0.0	0.0
P-215	С	41-48	0.0	0.0	0.0	0.0	0.0	0.0
	D	58-65	0.0	0.0	0.0	0.0	0.0	0.0
	E	75-82	0.0	0.0	0.0	0.0	0.0	0.0
	А	8-15	0.0	0.0	0.0	0.0	0.0	0.0
	В	32-37	0.0	0.0	0.0	0.0	0.0	0.0
P-216	С	56-63	0.0	0.0	0.0	0.0	0.0	0.0
	D	80-87	0.0	0.0	0.0	0.0	0.0	0.0
	E	104-111	0.0	0.0	0.0	0.0	0.0	0.0
D_217D	А	6-11	0.0	0.0	0.0	0.0	0.0	0.0
P-21/K	В	16-21	0.0	0.0	0.0	0.0	0.0	0.0

TABLE 9, CONTINUED SUMMARY OF METHANE CONCENTRATIONS FOR VADOSE ZONE GAS MONITORING POINTS FIRST SEMIANNUAL 2021 MONITORING PERIOD SUNSHINE CANYON LANDFILL

Probe ID	Interval	Depth (ft bgs)	1/19/2021 - 1/21/2021	2/15/2021 - 2/18/2021	3/23/2021 - 3/25/2021	4/20/2021 - 4/29/2021	5/25/2021 - 5/27/2021	6/22/2021 - 6/24/2021
	А	5-8	0.0	0.0	0.0	0.1	0.0	0.0
P-218R	В	26.5-30	0.0	0.0	0.0	0.1	0.0	0.0
	С		0.0	0.0	0.0	0.1	0.0	0.0
	А	7-15	0.0	0.0	0.0	0.0	0.0	0.0
	В	57-66	0.0	0.0	0.0	0.0	0.0	0.0
P-219	С	109-117	0.0	0.0	0.0	0.0	0.0	0.0
	D	158-167	0.0	0.0	0.0	0.0	0.0	0.0
	E	209-218	0.0	0.0	0.0	0.0	0.0	0.0
	Α	6.9-14	0.0	0.0	0.0	0.0	0.0	0.0
	В	44-51	0.0	0.0	0.0	0.0	0.0	0.0
P-220	С	79-88	0.0	0.0	0.0	0.0	0.0	0.0
	D	117-127	0.0	0.0	0.0	0.0	0.0	0.0
	E	150-159	0.0	0.0	0.0	0.0	0.0	0.0
	А	8-15	0.0	0.0	0.0	0.0	0.0	0.0
	В	32-39	0.0	0.0	0.0	0.0	0.0	0.0
P-220B	С	56-61	0.0	0.0	0.0	0.0	0.0	0.0
	D	80-87	0.0	0.0	0.0	0.0	0.0	0.0
	E	104-111	0.0	0.0	0.0	0.0	0.0	0.0
	А	5-14	0.0	0.0	0.1	0.0	0.0	0.0
	В	49-58	0.0	0.0	0.1	0.0	0.0	0.0
P-221	С	91-101	0.1	0.0	0.1	0.0	0.0	0.0
	D	134-143	0.0	0.0	0.1	0.0	0.0	0.0
	E	176-186	0.0	0.0	0.0	0.0	0.0	0.0
	Α	7-15	0.0	0.0	0.0	0.0	0.0	0.0
	В	48-57	0.0	0.0	0.0	0.0	0.0	0.0
P-222	С	88-98	0.0	0.0	0.0	0.0	0.0	0.0
	D	132-141	0.3	0.0	0.0	0.0	0.0	0.0
	E	173-181	0.0	0.0	0.0	0.0	0.0	0.0
	A	7-15	0.0	0.0	0.1	0.0	0.0	0.0
	В	32-41	0.0	0.0	0.0	0.0	0.0	0.0
P-223	С	51-64	0.0	0.0	0.1	0.0	0.0	0.0
	D	78-88	0.0	0.0	0.1	0.0	0.0	0.0
	E	100-113	0.0	0.0	0.1	0.0	0.0	0.0
	A	5-14	0.0	0.0	0.0	0.0	0.0	0.0
	В	60-70	0.0	0.0	0.1	0.0	0.0	0.0
P-224	C	115-125	0.4	0.0	0.3	0.0	0.0	0.0
	D	168-180	0.0	0.0	0.0	0.0	0.0	0.0
	E	223-236	0.0	0.0	0.0	0.0	0.0	0.0
	A	7-14	0.0	0.0	0.0	0.0	0.2	0.0
	В	65-73	0.0	0.0	0.0	0.0	0.0	0.0
P-225	C	124-133	0.0	0.0	0.0	0.0	0.0	0.0
	D	184-192	0.0	0.0	0.0	0.0	0.0	0.0
	E	243-250	0.0	0.0	0.0	0.0	0.0	0.0
	A	7-14	0.0	0.0	0.0	0.0	0.0	0.0
	В	58-68	0.0	0.0	0.0	0.0	0.0	0.0
P-226	C	108-117	0.0	0.0	0.0	0.0	0.0	0.0
	D	158-168	0.0	0.0	0.0	0.0	0.0	0.0
	E	202-209	0.0	0.0	0.0	0.0	0.0	0.0

TABLE 9, CONTINUED SUMMARY OF METHANE CONCENTRATIONS FOR VADOSE ZONE GAS MONITORING POINTS FIRST SEMIANNUAL 2021 MONITORING PERIOD SUNSHINE CANYON LANDFILL

Probe ID	Interval	Depth (ft bgs)	1/19/2021 - 1/21/2021	2/15/2021 - 2/18/2021	3/23/2021 - 3/25/2021	4/20/2021 - 4/29/2021	5/25/2021 - 5/27/2021	6/22/2021 - 6/24/2021
	А	6-15	0.0	0.0	0.0	0.0	0.0	0.0
	В	46-55	0.6	0.0	0.0	0.0	0.0	0.0
P-227	С	85-95	0.0	0.0	0.0	0.0	0.0	0.0
	D	126-134	0.0	0.0	0.1	0.0	0.0	0.0
	E	164-172	0.0	0.0	0.2	0.0	0.0	0.0
	Α	7-14	0.0	0.0	0.9	0.0	0.0	0.0
	В	56-65	0.0	0.0	0.1	0.0	0.0	0.0
P-228	С	107-115	0.6	0.0	0.7	0.0	0.0	0.0
	D	156-165	0.0	0.0	0.0	0.0	0.0	0.0
	E	203-214	0.0	0.0	0.0	0.0	0.0	0.0
	Α	4-15	0.0	0.0	0.1	0.0	0.0	0.0
	В	42-50	0.0	0.0	0.1	0.0	0.0	0.0
P-229	С	77-86	0.0	0.0	0.0	0.0	0.0	0.0
	D	106-115	0.0	0.0	0.0	0.0	0.0	0.0
	E	150-159	0.0	0.0	0.0	0.0	0.0	0.0
	А	7-14						
P-230R	В	35			REMOVED DUE T	O CONSTRUCTION		
	С	50						
	А	4-14						
	В	20-27						
P-231	- C	33-40			REMOVED DUE T			
. 201	D	45-53						
	F	58-67						
	Δ	10-15	0.0	0.0	0.0	0.0	0.0	0.0
	B	47-52	0.0	0.0	0.0	0.0	0.0	0.0
P-230	C	78-83	0.0	0.0	0.0	0.0	0.0	0.0
1 233	D	109-11/	0.0	0.0	0.0	0.0	0.0	0.0
	F	140-145	0.0	0.0	0.0	0.0	0.0	0.0
	Δ	10-15	0.0	0.0	0.0	0.0	0.0	0.0
	B	69-74	0.0	0.0	0.0	0.0	0.0	0.0
P-240	C C	133-138	0.0	0.0	0.0	0.0	0.0	0.0
F-240	D	206-211	0.0	0.0	0.0	0.0	0.0	0.0
	F	268-273	0.0	0.0	0.0	0.0	0.0	0.0
	Δ	10-15	0.0	0.0	0.1	0.0	0.0	0.0
	B	37-42	0.0	0.1	0.1	0.0	0.0	0.0
P-2/1	C	61-66	0.0	0.0	0.0	0.0	0.0	0.0
1 241	D	85-90	0.0	0.0	0.0	0.0	0.0	0.0
	F	109-114	0.0	0.0	0.0	0.0	0.0	0.0
	C	105 114	0.0	0.0	0.0	0.0	0.0	0.0
P-2/12	D D	60-65	0.0	0.0	0.0	0.0	0.0	0.0
1 242	F	78-83	0.0	0.0	0.0	0.0	0.0	0.0
	^	6-11	0.0	0.0	0.0	0.0	0.1	0.0
P-242	R	20-20	0.1	0.0	0.0	0.0	0.1	0.0
F-243	C C	33-38	0.1	0.0	0.0	0.0	0.0	0.0
		£ 11	0.1	0.0	0.0	0.0	0.0	0.0
D 244	A	0-11	0.0	0.0	0.0	0.0	0.0	0.0
۲-244	в С	21-20	0.0	0.0	0.1	0.0	0.0	0.0
	L	30-41	0.0	0.0	0.0	0.0	0.0	0.0

TABLE 9, CONTINUED SUMMARY OF METHANE CONCENTRATIONS FOR VADOSE ZONE GAS MONITORING POINTS FIRST SEMIANNUAL 2021 MONITORING PERIOD SUNSHINE CANYON LANDFILL

Probe ID	Interval	Depth (ft bgs)	1/19/2021 - 1/21/2021	2/15/2021 - 2/18/2021	3/23/2021 - 3/25/2021	4/20/2021 - 4/29/2021	5/25/2021 - 5/27/2021	6/22/2021 - 6/24/2021
	А	6-11	0.1	0.0	0.0	0.0	0.0	0.0
	В	20-25	0.2	0.0	0.0	0.0	0.0	0.0
P-245	С	35-40	0.1	0.0	0.0	0.0	0.0	0.0
	D	50-55	0.2	0.0	0.0	0.0	0.0	0.0
	E	64-69	0.0	0.0	0.0	0.0	0.0	0.0
D 246	Α	6-9						
P-240	В	12-19			REINIOVED DUE I	U CONSTRUCTION		
	P-	203D	0.0	0.0	0.0	0.0	0.0	0.0
Subdrains	P	204D	0.0	0.0	0.0	0.0	0.0	0.0
	P-	211D	0.0	0.0	0.0	0.0	0.0	0.0

TABLE 10 SUMMARY OF ANALYTICAL RESULTS FOR STORMWATER SAMPLES FIRST SEMIANNUAL 2021 MONITORING PERIOD SUNSHINE CANYON LANDFILL

Analyte	Units	Stormwater	Stormwater	Stormwater	Stormwater
		1/4/2021	1/26/2021	2/2/2021	3/16/2021
General Chemistry Parameters:					
Ammonia-Nitrogen	mg/L	1.3	0.88	3.8	0.66
Biochemical Oxygen Demand	mg/L	15	12	5.9	6.1
Chemical Oxygen Demand	mg/L	79	46	14j	32
Chloride	mg/L	19	25	23	20
Fluoride	mg/L	0.50	0.96	0.96	0.81
Nitrate as N	mg/L	1.2	1.1	1.3	1.2
Nitrite as N	mg/L	0.069j	0.086j	0.065j	0.088j
Nitrate+Nitrite as N	mg/L	1.3	1.2	1.4	1.3
Oil & Grease (HEM)	mg/L	1.4	0.87j	0.77	1.2
Total Suspended Solids	mg/L	6.9	16	31	39
Metals:					
Aluminum	mg/L	0.18	0.42	0.57	2.3
Antimony	mg/L	0.00087j	0.00059j	0.0014j	0.0011j
Arsenic	mg/L	0.0021	0.0011	0.0014	0.0023
Beryllium	mg/L	0.00025	0.00025	0.00025	0.00025
Cadmium	mg/L	0.0022	0.0025	0.0014	0.0015
Copper	mg/L	0.0085	0.0078	0.0054	0.012
Iron	mg/L	0.27	0.73	2.2	4.4
Lead	mg/L	0.00050	0.00050	0.00054j	0.0022
Manganese	mg/L	2.7	3.2	5.4	2.2
Mercury	mg/L	0.00010	0.00010	0.00010	0.00010
Nickel	mg/L	0.11	0.12	0.11	0.078
Phosphorus	mg/L	0.041j	0.062	0.050	0.20
Selenium	mg/L	0.0019j	0.0022	0.0021	0.0024
Silver	mg/L	0.00050	0.00050	0.00050	0.00050
Zinc	mg/L	0.13	0.11	0.12	0.059 [†]
Volatile Organic Compounds (8260B):	<u> </u>				
Acrylonitrile	μg/L	1.7	0.87	1.7	1.7
Alpha-Terpineol	μg/L	2.9j	2.4	2.4	2.3
Benzene	μg/L	0.53	0.27	0.53	0.53
Ethylbenzene	μg/L	0.71	0.36	0.71	0.71
Toluene	μg/L	0.66	0.33	0.66	0.66
Trichloroethene	μg/L	0.58	0.29	0.58	0.58
Semivolatile Organic Compounds (8270C):	1 0,				
Benzoic Acid	μg/L	12	12	12	12
Butyl Benzyl Phthalate	μg/L	2.4	2.4	2.4	2.4
m+p-Cresol	μg/L	2.1	2.1	2.1	2.1
Dimethyl Phthalate	μg/L	2.5	2.5	2.5	2.5
Fluoranthene	μg/L	3.0	3.0	3.0	3.0
Phenol	μg/L	2.0	2.0	2.0	2.0
Pyrene	μg/L	2.9	2.8	2.8	2.8
Polychlorinated Biphenyls (608.3): None detected.	1:0,				

Notes:

(j) Indicates a trace concentration between the Method Detection Limit and the Practical Quantitation Limit.

(†) Indicates compund was also found in the method blank.

ND: Analyte was not detected. Detection limit is unknown.

0.25 NA 173 Analyte was not detected. Value listed is the Method Detection Limit.

Analyte was not analyzed.

Analyte was detected. Value reported by laboratory.

TABLE 11 SUMMARY OF ANALYTICAL RESULTS FOR LEACHATE MONITORING POINTS APRIL 2021 SUNSHINE CANYON LANDFILL

		LEACHATE MON	ITORING POINTS
Analyte	Units	LR-2R	DEEP LEACHATE
		4/27/2021	4/27/2021
Volatile Organic Compounds (8260B):			
Naphthalene	μg/L	19	NA
Notes:			

Analyte was detected.

173

NA

Analyte was not analyzed.

TABLE 12SUMMARY OF COLLECTED WATER SOURCES - FIRST SEMIANNUAL 2021 MONITORING PERIODSUNSHINE CANYON LANDFILL

Month	Total Purchase Water	Subdrains	Landfill Leachate	Landfill Gas Condensate	Seep Collectors	Groundwater Cutoff Wall	MONTHLY TOTALS
January	6,671,412	1,917,195	368,036	1,176,367	87,337	696,459	10,916,806
February	6,559,960	1,754,768	342,543	1,292,012	167,402	665,524	10,782,209
March	7,318,432	2,071,900	409,269	1,232,302	108,699	269,678	11,410,280
April	7,448,584	2,008,933	361,764	1,066,717	2,223	0	10,888,221
May	4,618,152	1,978,640	330,922	986,138	2,028	0	7,915,880
June	9,246,028	2,302,338	417,428	1,264,154	176,945	0	13,406,893
JANUARY - JUNE 2021 TOTAL:	41,862,568	12,033,774	2,229,962	7,017,690	544,634	1,631,661	65,320,289

TABLE 13 SUNSHINE CANYON LANDFILL IMPORTED SOIL SAMPLING SUMMARY - FIRST SEMIANNUAL 2021 MONITORING PERIOD

GENERATOR	SAMPLER	WASTE TYPE	QUANTITY	CONSTITUENTS ANALYZED
Stericycle, Inc.	No Samples Taken	Treated & Sterilized Medical Waste	26,000 Tons	No Samples Taken
Medical Waste Services LLC	No Samples Taken	Treated Medical Waste, Treated APHIS Waste/Foreign Garbage, FDA Confiscated Items	2,100 Tons	No Samples Taken
Los Angeles County Fire Department	No Samples Taken	Los Angeles Fire department Fire Fighter Garments	5 Tons	No Samples Taken
Port of Los Angeles	No Samples Taken	Empty Paint Cans	30 Cubic Yards	No Samples Taken
Bumble Bee Foods LLC	No Samples Taken	Canned Foods	300,000 Pounds	No Samples Taken
Orange Traders LLC	No Samples Taken	Vegetable Disposal, packed individually in box	1 Ton	No Samples Taken
Calstate Pipeline Inc	Enviro - Chem, Inc.	Sand/Silt (Non Haz)	15 Cubic Yards	CH, OCP, OPP, TPH, VOC, SVOCs, Title 22 Metals, STLC Cr and Cu, TCLP Cr
SA Recycling LLC/ Sun Valley	Enviro - Chem, Inc.	TPH-Contaminated Soil (Non Haz Soil)	65 Tons	TPH, VOCs, Moisture, PCBs andTitle 22 Metals
Southern California Edison/ Downey Substation	American Environmental	Non Haz Soil	40 Cubic Yards	TPH, VOCs, PCBs, Title 22 Metals, Moisture, and STLC As
SA Recycling LLC/ Montebello	Enviro - Chem, Inc.	TPH-Contaminated Soil (Non Haz Soil)	20 Tons	TPH, VOCs, Moisture, PCBs, Title 22 Metals, and STLC Cr
Greenfield Produce Imports	No Samples Taken	Food Product - Hawaii Sweet Potato	660 Pounds	No Samples Taken
Southern California Edison/ Amador Substation	American Environmental	Non Haz Soil	100 Tons	TPH, VOCs, PCBs, Title 22 Metals, Moisture, and STLC As
Southern California Edison/ Crater Substation	Asset Laboratories	Non Haz Soil	3 Cubic Yards	TPH, PCBs, Title 22 Metals, Moisture
Global Farms	No Samples Taken	Food Product - Organic Ginger Root	18,000 Pounds	No Samples Taken
Los Angeles County Sheriff's Department, CPE	No Samples Taken	Marijuana/Off Spec	35,000 Pounds	No Samples Taken
Tate & Lyle PLC	No Samples Taken	Industrial Process Waste - Polydextrose	21 Tons	No Samples Taken
Uchida of America Corp	No Samples Taken	Non Haz Waste - Old Pens and Markers	3,000 Pounds	No Samples Taken

Notes:

VOC: Volatile Organic Compound

OCP: Organochlorine Pesticides

PCB: Polychlorinated Biphenyls

PAH: Polynuclear Aromatic Hydrocarbons

CH: Chlorinated Herbicides

TPH: Total Petroleum Hydrocarbons OPP: Organophosphorus Pesticides SVOC: Semivolatile Organic Compound MSDS: Material Safety Data Sheet

*No Samples Taken: Waste previously characterized, or no characterization required (e.g. cured alphalt, treated wood, etc). Special waste decision changed/recertified to extend expiration date, account for increases in volume estimates, or to change to ongoing disposal.

TABLE 14 SUNSHINE CANYON LANDFILL GENERATOR: CALSTATE PIPELINE / PICO RIVERA SOIL SAMPLING ESTIMATED ANNUAL QUANTITY: 15 Cubic Yards

SAMPLE	LACSD/ Unit H SA	LACSD	Hazardous	Lined Cell	Unrestricted					
DATE SAMPLED	08/31/20	02/26/21	Level	Limit	Limit					
SAMPLED BY	Enviro-Chem, Inc.	Enviro-Chem, Inc.	(mg/kg)							
DATE ANALYZED	9/14-20/2020	2/28-03/01/2021								
Antimony	1.0	ΝΔ	500	380	30					
Arsenic	0.3	NA	500	500	12					
Barium	136	NΔ	10,000	10,000	5 200					
Bervllium	0.5	NΔ	75	75	16					
Cadmium	0.5	NA	100	100	17					
Chromium	119	NA	2,500	2,500	45					
Cobalt	1.0	NA	8.000	350	23					
Copper	275	NA	2,500	2.500	2.500					
Lead	48.7	NA	1,000	350	80					
Mercury	0.707	NA	20	20	9.4					
Molybdenum	5.0	NA	3,500	3,500	380					
Nickel	45.0	NA	2,000	2,000	1,500					
Selenium	1.0	NA	100	100	100					
Silver	1.0	NA	500	500	380					
Thallium	1.0	NA	700	111	0.78					
Vanadium	5.0	NA	2,400	2,400	390					
Zinc	460	NA	5,000	5,000	5,000					
METALS (mg/L) METHOD 6010B-TCLP:										
Chromium	NA	5.0	5	NS	NS					
METALS (mg/L) METHOD 6010B-STLC:										
Chromium	1.84	NA	5	NS	NS					
Copper	1.0	NA	25	500	12					
VOLATILE ORGANIC COMPOUNDS (mg/kg)	METHOD 8260B: None	Detected								
POLYCYCLIC AROMATIC HYDROCARBONS (mg/kg) METHOD 8270:										
Bis (2-Ethylexyl) Phthalate 0.899 NA NS NS NS										
ORGANOCHLORINE PESTICIDES (ug/kg) MET	HOD 8081A: NONE DE	TECTED								
ORGANOPHOSPHORUS PESTICIDES (ug/kg)	METHOD 8141A: NONE	DETECTED								
CHLORINATED HERBICIDES (ug/kg) METHOD	0 8151A: NONE DETECT	ED								

Notes:

NA: Not Analyzed

NS: Not Specified

STLC: Soluble Threshold Limit Concentration.

TCLP: Toxicity Characteristic Leaching Procedure.

Left justified and shaded: Not detected. Value shown is Practical Quantitation Limit.

Right-Justified and no shading: Qualtifiable result shown.

TABLE 15 SUNSHINE CANYON LANDFILL GENERATOR: SA RECYCLING LLC / SUN VALLEY SOIL SAMPLING ESTIMATED ANNUAL QUANTITY: 65 Tons

SAMPLE	01 02		Hazardous	Lined Cell	Unrestricted
	02/11/21	02/11/21	Level	Limit	Limit
	02/11/21	02/11/21	Level	Linit	Linit
SAMPLED BY	Enviro-Chem, Inc.	Enviro-Chem, Inc.	(mg/kg)		
DATE ANALYZED	02/12/21	02/12/21			
METALS (mg/kg) METHOD 6010B/7000CAN	l:				
Antimony	1.0	1.0	500	380	30
Arsenic	0.3	13.1	500	500	12
Barium	113	104	10,000	10,000	5,200
Beryllium	0.5	0.5	75	75	16
Cadmium	0.5	0.5	100	100	1.7
Chromium	57.9	69.4	2,500	2,500	45
Cobalt	12.7	11.9	8,000	350	23
Copper	14.6	22.2	2,500	2,500	2,500
Lead	19.0	17.9	1,000	350	80
Mercury	0.030	0.01	20	20	9.4
Molybdenum	5.0	5.0	3,500	3,500	380
Nickel	2.5	2.5	2,000	2,000	1,500
Selenium	1.0	1.0	100	100	100
Silver	1.0	1.0	500	500	380
Thallium	1.0	1.0	700	111	0.78
Vanadium	5.0	79.1	2,400	2,400	390
Zinc	83.1	81.1	5,000	5,000	5,000
METALS (mg/L) METHOD 6010B-STLC:					
Chromium	0.359	0.357	5.0 (mg/L)	NS	NS
VOLATILE ORGANIC COMPOUNDS (mg/kg)	METHOD 8260B: None	Detected			
PETROLEUM HYDROCARBONS (mg/kg) MET	HOD M8015B:				
TPH-Diesel Bange (C10 - C28)	57 6	251	NS	1,000 (C4-C12)/ 10,000	10 (C4-C12)/ 10 (C12-
	52.0	251	N.S	(C12-C22)/ NS (≥C23)	C22)/ 500 (≥C23)
TPH-Motor Oil Range (C28 - C35)	158	706	NS	NS (≥C23)	500 (≥C23)
MOISTURE CONTENT (%wt) Method 160.3N	1:				
Moisture Content	7.56	8.42	NS	50	NS
POLYCHLORINATED BIPHENYLS (PCBs) (mg/	kg) METHOD 8082: NO	NE DETECTED			

Notes:

NA: Not Analyzed

NS: Not Specified

STLC: Soluble Threshold Limit Concentration.

Left justified and shaded: Not detected. Value shown is Practical Quantitation Limit.

Right-Justified and no shading: Qualtifiable result shown.

TABLE 16 SUNSHINE CANYON LANDFILL GENERATOR: SOUTHERN CALIFORNIA EDISON / DOWNEY SUBSTATION SOIL SAMPLING ESTIMATED ANNUAL QUANTITY: 40 Cubic Yards

SAMPLE	HA1-0.5'	HA1-2.0'	HA2-0.5'	HA2-2.0'	HA3-0.5'	HA3-2.0'	Hazardous	Lined Cell	Unrestricted		
DATE SAMPLED	11/17/20	11/17/20	11/17/20	11/17/20	11/17/20	11/17/20	Level	Limit	Limit		
	American	American	American	American	American	American	(mg/kg)				
SAMPLED BY	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	(mg/kg)				
DATE ANALYZED	11/23/20	11/23/20	11/23/20	11/23/20	11/23/20	11/23/20					
MOISTURE CONTENT (%wt) METHOD ASTM	-D2216:										
Moisture Content	5.85	5.77	7.02	9.62	7.92	11.40	NS	50	NS		
POLYCHLORINATED BIPHENYLS (PCBs) (mg/	OLYCHLORINATED BIPHENYLS (PCBs) (mg/kg) METHOD 8082: NONE DETECTED										

Notes:

ND: Not Detected

NA: Not Analyzed

NS: Not Specified

Right-Justified and no shading: Qualtifiable result shown.

TABLE 17 SUNSHINE CANYON LANDFILL GENERATOR: SOUTHERN CALIFORNIA EDISON / CULVER CITY SUBSTATION SOIL SAMPLING ESTIMATED ANNUAL QUANTITY: 40 Cubic Yards

SAMPLE	C1	C2	C3	HA1-COMP	HA2-COMP	HA3-COMP	Hazardous	Lined Cell	Unrestricted
DATE SAMPLED	11/17/20	11/17/20	11/17/20	11/17/20	11/17/20	11/17/20	Level	Limit	Limit
	American	American	American	American	American	American			
SAMPLED BY	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	(mg/kg)		
DATE ANALYZED	11/23/20	11/23/20	11/23 & 12/4/2020	11/24-25 & 12/2/2020	11/24-25 & 12/2/2020	11/24-25 & 12/2-7/2020			
METALS (mg/kg) METHOD 6010B/7000CAN	И:								
Antimony	NA	NA	NA	2.00	2.00	2.68	500	380	30
Arsenic	NA	NA	NA	46.6	23.2	69.20	500	500	12
Barium	NA	NA	NA	125	140	134	10,000	10,000	5,200
Beryllium	NA	NA	NA	1.00	1.00	1.00	75	75	16
Cadmium	NA	NA	NA	1.00	1.00	1.00	100	100	1.7
Chromium	NA	NA	NA	21.3	21.8	23.4	2,500	2,500	45
Cobalt	NA	NA	NA	11.6	11.9	13.4	8,000	350	23
Copper	NA	NA	NA	107.0	47.5	48.5	2,500	2,500	2,500
Lead	NA	NA	NA	26.4	27.3	21.9	1,000	350	80
Mercury	NA	NA	NA	0.100	0.100	0.100	20	20	9.4
Molybdenum	NA	NA	NA	1.00	1.00	1.00	3,500	3,500	380
Nickel	NA	NA	NA	17.2	16.8	18.8	2,000	2,000	1,500
Selenium	NA	NA	NA	2.00	2.00	2.00	100	100	100
Silver	NA	NA	NA	1.00	1.00	1.00	500	500	380
Thallium	NA	NA	NA	2.00	2.00	2.00	700	111	0.78
Vanadium	NA	NA	NA	43.0	44.3	45.5	2,400	2,400	390
Zinc	NA	NA	NA	189	221	213	5,000	5,000	5,000
METALS (mg/L) METHOD 6010B-STLC:									
Arsenic	NA	NA	NA	NA	NA	1.30	500	500	12
VOLATILE ORGANIC COMPOUNDS (mg/kg)	METHOD 8260B: NO	ONE DETECTED							
PETROLEUM HYDROCARBONS (mg/kg) ME	THOD M8015G/M80	15D: NONE DETECTE	D						
TRPH (C4-C12)	NA	10.0	10.0	10.0	10.0	10.0	NS	1,000	10
*TPH Diesel (13-22)	NA	1550	917	10.0	10.0	10.0	NS	10,000	10
*TPH Heavy (23-40)	NA	2240	4890	100	100	100	NS	NS	500
*TPH Diesel + Heavy (13-40)	NA	3790	5800	100	100	100	NS	NS	500
MOISTURE CONTENT (%wt) METHOD ASTN	N-D2216:								-
Moisture Content	1.14	1.81	2.30	NA	NA	NA	NS	50	NS
POLYCHLORINATED BIPHENYLS (PCBs) (mg,	/kg) METHOD 8082:	NONE DETECTED							
Notes:									

NA: Not Analyzed NS: Not Specified

*Threshold for average TPH for Disposal in a lined cell = 50,000 mg/kg

 ##
 Left justified and shaded: Not detected. Value shown is Practical Quantitation Limit.

 ##
 Right-Justified and no shading: Qualtifiable result shown.

TABLE 18 SUNSHINE CANYON LANDFILL GENERATOR: SOUTHERN CALIFORNIA EDISON / DOWNEY SUBSTATION SOIL SAMPLING ESTIMATED ANNUAL QUANTITY: 40 Cubic Yards

SAMPLE	HA1-0.5'	HA1-2.0'	C1	HA1-COMP	Hazardous	Lined Cell	Unrestricted
	01/07/21	01/07/21	01/07/21	01/07/21	Loval	Limit	Linnit
DATE SAMPLED	01/07/21	01/07/21	01/07/21	01/07/21	Level	Limit	Limit
	American	American	American	American	(mg/kg)		
SAMPLED BY	Enviromental	Enviromental	Enviromental	Enviromental			
	01/07/21	01/07/21	1/7-12/2021	01/08/21			
METALS (mg/kg) METHOD 6010B/7000CAM	:						
Antimony	NA	NA	NA	5.00	500	380	30
Arsenic	NA	NA	NA	40.2	500	500	12
Barium	NA	NA	NA	112.0	10,000	10,000	5,200
Beryllium	NA	NA	NA	2.50	75	75	16
Cadmium	NA	NA	NA	2.50	100	100	1.7
Chromium	NA	NA	NA	16.0	2,500	2,500	45
Cobalt	NA	NA	NA	9.35	8,000	350	23
Copper	NA	NA	NA	23.8	2,500	2,500	2,500
Lead	NA	NA	NA	12.5	1,000	350	80
Mercury	NA	NA	NA	0.200	20	20	9.4
Molybdenum	NA	NA	NA	5.00	3,500	3,500	380
Nickel	NA	NA	NA	13.5	2,000	2,000	1,500
Selenium	NA	NA	NA	5.00	100	100	100
Silver	NA	NA	NA	5.00	500	500	380
Thallium	NA	NA	NA	5.00	700	111	0.78
Vanadium	NA	NA	NA	34.5	2,400	2,400	390
Zinc	NA	NA	NA	66.0	5,000	5,000	5,000
VOLATILE ORGANIC COMPOUNDS (mg/kg)	METHOD 8260B:	•	•			·	
Acetone	NA	NA	0.366	NA	NS	670,000	61,000
2-Butanone (MEK)	NA	NA	0.104	NA	NS	190,000	27,000
2-Hexanone	NA	NA	0.146	NA	NS	NS	NS
4-Methyl-2-pentanone (MIBK)	NA	NA	0.0386	NA	NS	56,000	5,300
Toluene	NA	NA	0.00224	NA	NS	47.000	4.900
m.p-Xvlenes	NA	NA	0.00150	NA	NS	97.465	580
PETROLEUM HYDROCARBONS (mg/kg) MET	HOD M8015G/M801	D: NONE DETECTED				. ,	
TRPH (C4-C12)	NA	NA	10.0	10.0	NS	1.000	10
*TPH Diesel (13-22)	NA	NA	2950	10.0	NS	10,000	10
*TPH Heavy (23-40)	NA	NA	7590	100.0	NS	NS	500
*TPH Diesel + Heavy (13-40)	NA	NA	10500	100.0	NS	NS	500
MOISTURE CONTENT (%wt) METHOD ASTM	-D2216:						
Moisture Content	13.0	14.2	2.37	NA	NS	NS	NS
POLYCHLORINATED BIPHENYLS (PCBs) (mg/	kg) METHOD 8082: N	ONE DETECTED	*				

Notes:

ND: Not Detected

NA: Not Analyzed

NS: Not Specified

*Threshold for average TPH for Disposal in a lined cell = 50,000 mg/kg ## Left justified and shaded: Not detected. Value shown is Practical Quantitation Limit. ## Right-Justified and no shading: Qualtifiable result shown.

TABLE 19 SUNSHINE CANYON LANDFILL GENERATOR: SA RECYCLING LLC / MONTEBELLO SOIL SAMPLING **ESTIMATED ANNUAL QUANTITY: 20 Tons**

SAMPLE	1A	2A	A 2B		Lined Cell	Unrestricted
DATE SAMPLED	04/08/21	04/08/21	04/08/21	Level	Limit	Limit
SAMPLED BY	Enviro-Chem, Inc.	Enviro-Chem, Inc.	Enviro-Chem, Inc.	(mg/kg)		
DATE ANALYZED	4/9-13/21	4/9-13/21	4/9-13/21			
METALS (mg/kg) METHOD 6010B/7000CAN	A:	4.0	4.0	500	200	20
Antimony	1.0	1.0	1.0	500	380	30
Arsenic	2.16	2.61	3.31	500	500	12
Barium	69.5	58.8	78.2	10,000	10,000	5,200
Beryllium	0.5	0.5	0.5	75	75	16
Cadmium	0.5	1.12	0.513	100	100	1.7
Chromium	28.2	35.2	34.6	2,500	2,500	45
Cobalt	6.19	5.66	6.98	8,000	350	23
Copper	19.3	32.4	48.5	2,500	2,500	2,500
Lead	12.3	19.1	20.4	1,000	350	80
Mercury	0.479	0.298	0.830	20	20	9.4
Molybdenum	5.0	5.0	5.0	3,500	3,500	380
Nickel	16.1	23.0	25.7	2,000	2,000	1,500
Selenium	1.0	1.0	1.0	100	100	100
Silver	1.0	1.0	1.0	500	500	380
Thallium	1.0	1.0	1.0	700	111	0.78
Vanadium	24.1	21.2	23.3	2,400	2,400	390
Zinc	120	174	159	5,000	5,000	5,000
VOLATILE ORGANIC COMPOUNDS (mg/kg)	METHOD 8260B:					
Acetone	0.017	NA	0.020	NS	670,000	61,000
4-Isopropyltoluene	0.005	NA	NA	NS	NS	NS
1,2,4-Trimethylbenzene	0.005	NA	0.009	NS	240	58
PETROLEUM HYDROCARBONS (mg/kg) ME	THOD M8015B:					
TPH-Diesel Range (C10 - C28)	135	NA	250	NS	1,000 (C4-C12)/ 10,000	10 (C4-C12)/ 10 (C12-
TPH-Motor Oil Bange (C28 - C35)	1/17	ΝΔ	350	NS	NS (>C23)	500 (>C23)
MOISTURE CONTENT (%wt) Method 160 30	<u>і </u>		550	113	103 (2023)	300 (2023)
Moisture Content	8/8	NΔ	8.03	NS	50	NS
POLYCHLORINATED BIPHENYLS (PCBs) (mg	(kg) METHOD 8082: NO		8.95	115	50	115
Notes:						
NULCO.						

NA: Not Analyzed

NS: Not Specified
 Left justified and shaded: Not detected. Value shown is Practical Quantitation Limit.
 ## Right-Justified and no shading: Qualtifiable result shown.
 Only detected Organics are shown.

TABLE 26 SUNSHINE CANYON LANDFILL GENERATOR: SOUTHERN CALIFORNIA EDISON / CRATER SUBSTATION, AGOURA HILLS SOIL SAMPLING **ESTIMATED ANNUAL QUANTITY: 3 Cubic Yards**

SAMPLE	AC1	AC2	HA1-0.5	HA1-0.2	HA1-COMP	S1	Hazardous	Lined Cell	Unrestricted
DATE SAMPLED	05/04/21	05/04/21	05/04/21	05/04/21	05/04/21	05/04/21	Level	Limit	Limit
	Assett	Assett							
SAMPLED BY	Laboratories	Laboratories	Assett Laboratories	Assett Laboratories	Assett Laboratories	Assett Laboratories	(mg/kg)		
DATE ANALYZED	05/05/21	05/05/21	05/05/21	05/05/21	05/05/21	05/05/21			
METALS (mg/kg) METHOD 6010B/7000CAM	:								
Antimony	5.0	5.0	NA	NA	4.99	5.0	500	380	30
Arsenic	2.5	2.5	NA	NA	5.58	5.42	500	500	12
Barium	146	53.3	NA	NA	91.8	85.2	10,000	10,000	5,200
Beryllium	2.5	2.5	NA	NA	2.49	2.5	75	75	16
Cadmium	2.5	2.5	NA	NA	7.59	7.03	100	100	1.7
Chromium	9.45	6.35	NA	NA	16.7	16.4	2,500	2,500	45
Cobalt	9.54	5.0	NA	NA	8.03	8.00	8,000	350	23
Copper	17.9	11.6	NA	NA	17.7	17.7	2,500	2,500	2,500
Lead	5.0	28.3	NA	NA	4.99	5.0	1,000	350	80
Mercury	0.205	0.199	NA	NA	0.200	0.199	20	20	9.4
Molybdenum	5.0	5.0	NA	NA	12.2	11.8	3,500	3,500	380
Nickel	17.5	20.2	NA	NA	25.4	25.0	2,000	2,000	1,500
Selenium	5.0	5.0	NA	NA	4.99	5.0	100	100	100
Silver	5.0	5.0	NA	NA	4.99	5.0	500	500	380
Thallium	5.0	5.0	NA	NA	4.99	5.0	700	111	0.78
Vanadium	33.9	41.9	NA	NA	54.1	58.9	2,400	2,400	390
Zinc	33.6	44.4	NA	NA	66.9	65.6	5,000	5,000	5,000
PETROLEUM HYDROCARBONS (mg/kg) MET	HOD M8015G/M80	15D: NONE DETECT	ED						
MOISTURE CONTENT (%wt) METHOD ASTM-D2216:									
Moisture Content	0.4893	0.6175	13.48	14.81	NA	16.64	NS	50	NS
POLYCHLORINATED BIPHENYLS (PCBs) (mg/	kg) METHOD 8082:	NONE DETECTED							

Notes:

ND: Not Detected

NA: Not Analyzed

NS: Not Specified

*Threshold for average TPH for Disposal in a lined cell = 50,000 mg/kg

Left justified and shaded: Not detected. Value shown is Practical Quantitation Limit.## Right-Justified and no shading: Qualtifiable result shown.

TABLE 20 SUNSHINE CANYON LANDFILL GENERATOR: SOUTHERN CALIFORNIA EDISON / AMADOR SUBSTATION SOIL SAMPLING ESTIMATED ANNUAL QUANTITY: 100 Tons

SAMPLE	HA1-0.5'	HA1-2.0'	HA2-0.5'	HA2-2.0'	HA3-0.5'	HA3-2.0'	Hazardous	Lined Cell	Unrestricted		
DATE SAMPLED	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	Level	Limit	Limit		
	American	American	American	American	American	American	(ma/ka)				
SAMPLED BY	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	(mg/kg)				
DATE ANALYZED	10/27-28/2020	10/27-28/2020	10/27-28/2020	10/27-28/2020	10/27-28/2020	10/27-28/2020					
MOISTURE CONTENT (%wt) METHOD ASTN	1-D2216:										
Moisture Content	15.2	27.9	12.9	25.9	18.3	22.50	NS	50	NS		
POLYCHLORINATED BIPHENYLS (PCBs) (mg/	OLYCHLORINATED BIPHENYLS (PCBs) (mg/kg) METHOD 8082: NONE DETECTED										

Notes:

ND: Not Detected

NA: Not Analyzed

NS: Not Specified

TABLE 20 (Cont'd) SUNSHINE CANYON LANDFILL GENERATOR: SOUTHERN CALIFORNIA EDISON / AMADOR SUBSTATION SOIL SAMPLING ESTIMATED ANNUAL QUANTITY: 100 Tons

SAMPLE	HA4-0.5'	HA4-2.0'	HA5-0.5'	HA5-2.0'	HA6-0.5'	HA6-2.0'	Hazardous	Lined Cell	Unrestricted	
DATE SAMPLED	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	Level	Limit	Limit	
	American	American	American	American	American	American	(ma/ka)			
SAMPLED BY	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	(mg/kg)			
DATE ANALYZED	10/27-28/2020	10/27-28/2020	10/27-28/2020	10/27-28/2020	10/27-28/2020	10/27-28/2020				
MOISTURE CONTENT (%wt) METHOD ASTM	I-D2216:									
Moisture Content	12.1	21.6	14.9	21.3	22.6	17.50	NS	50	NS	
OLYCHLORINATED BIPHENYLS (PCBs) (mg/kg) METHOD 8082: NONE DETECTED										

Notes:

ND: Not Detected

NA: Not Analyzed

NS: Not Specified

TABLE 20 (Cont'd) SUNSHINE CANYON LANDFILL GENERATOR: SOUTHERN CALIFORNIA EDISON / AMADOR SUBSTATION SOIL SAMPLING ESTIMATED ANNUAL QUANTITY: 100 Tons

SAMPLE	HA7-0.5'	HA7-2.0'	HA8-0.5'	HA8-2.0'	HA9-0.5'	HA9-2.0'	Hazardous	Lined Cell	Unrestricted	
DATE SAMPLED	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	Level	Limit	Limit	
	American	American	American	American	American	American	(ma/ka)			
SAMPLED BY	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	(mg/kg)			
DATE ANALYZED	10/27-28/2020	10/27-28/2020	10/27-28/2020	10/27-28/2020	10/27-28/2020	10/27-28/2020				
MOISTURE CONTENT (%wt) METHOD ASTM	I-D2216:									
Moisture Content	17.9	10.6	18.1	15.0	20.4	24.10	NS	50	NS	
VOLYCHLORINATED BIPHENYLS (PCBs) (mg/kg) METHOD 8082: NONE DETECTED										

Notes:

ND: Not Detected

NA: Not Analyzed

NS: Not Specified

TABLE 20 (Cont'd) SUNSHINE CANYON LANDFILL GENERATOR: SOUTHERN CALIFORNIA EDISON / AMADOR SUBSTATION SOIL SAMPLING ESTIMATED ANNUAL QUANTITY: 100 Tons

SAMPLE	HA10-0.5'	HA10-2.0'	HA11-0.5'	HA11-2.0'	HA11-0.5 Dup'	Hazardous	Lined Cell	Unrestricted				
DATE SAMPLED	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	Level	Limit	Limit				
	American	American	American	American	American	(mg/kg)						
SAMPLED BY	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	(mg/kg)						
DATE ANALYZED	10/27-28/2020	10/27-28/2020	10/27-28/2020	10/27-28/2020	10/27-28/2020							
MOISTURE CONTENT (%wt) METHOD ASTM	-D2216:											
Moisture Content	14.1	23.4	17.3	27.8	17.9	NS	50	NS				
POLYCHLORINATED BIPHENYLS (PCBs) (mg/	20LYCHLORINATED BIPHENYLS (PCBs) (mg/kg) METHOD 8082: NONE DETECTED											

Notes:

ND: Not Detected

NA: Not Analyzed

NS: Not Specified

TABLE 21 SUNSHINE CANYON LANDFILL GENERATOR: SOUTHERN CALIFORNIA EDISON / AMADOR SUBSTATION SOIL SAMPLING ESTIMATED ANNUAL QUANTITY: 100 Tons

SAMPLE	C1	C2	C3	C4	C5	C6	Hazardous	Lined Cell	Unrestricted		
DATE SAMPLED	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	Level	Limit	Limit		
	American	American	American	American	American	American	(ma/ka)				
SAMPLED BY	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	(iiig/ kg)				
DATE ANALYZED	10/28/20	10/28/20	10/28/20	10/28/20	10/28/20	10/28/20					
MOISTURE CONTENT (%wt) METHOD ASTM-D2216:											
Moisture Content	1.35	1.43	0.890	1.03	1.46	1.53	NS	50	NS		
POLYCHLORINATED BIPHENYLS (PCBs) (mg/kg) METHOD 8082: NONE DETECTED											

Notes:

ND: Not Detected

NA: Not Analyzed

NS: Not Specified

TABLE 21 (Cont'd) SUNSHINE CANYON LANDFILL GENERATOR: SOUTHERN CALIFORNIA EDISON / AMADOR SUBSTATION SOIL SAMPLING ESTIMATED ANNUAL QUANTITY: 100 Tons

SAMPLE	С7	C8	С9	C10	C11	Hazardous	Lined Cell	Unrestricted			
DATE SAMPLED	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	Level	Limit	Limit			
	American	American	American	American	American	(ma/ka)					
SAMPLED BY	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	(iiig/kg)					
DATE ANALYZED	10/28/20	10/28/20	10/28/20	10/28/20	10/28/20						
MOISTURE CONTENT (%wt) METHOD ASTM-D2216:											
Moisture Content	1.57	1.45	1.54	1.31	1.42	NS	50	NS			
POLYCHLORINATED BIPHENYLS (PCBs) (mg/kg) METHOD 8082: NONE DETECTED											

Notes:

ND: Not Detected

NA: Not Analyzed

NS: Not Specified
TABLE 22 SUNSHINE CANYON LANDFILL GENERATOR: SOUTHERN CALIFORNIA EDISON / AMADOR SUBSTATION SOIL SAMPLING ESTIMATED ANNUAL QUANTITY: 100 Tons

SAMPLE	HA1-COMP	HA2-COMP	HA3-COMP	HA4-COMP	HA5-COMP	HA6-COMP	Hazardous	Lined Cell	Unrestricted
DATE SAMPLED	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	Level	Limit	Limit
	American	American	American	American	American	American	(
SAMPLED BY	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	(mg/kg)		
DATE ANALYZED	10/27-28/20	10/27-28/20	10/27-28/20	10/27-28/20	10/27-28/20	10/27-28/20			
METALS (mg/kg) METHOD 6010B/7000CAN	1:								
Antimony	5.00	4.81	5.00	4.85	5.00	5.00	500	380	30
Arsenic	31.2	12.5	5.44	26.3	16.1	6.18	500	500	12
Barium	129	148	137	126	161	154	10,000	10,000	5,200
Beryllium	2.50	2.40	2.50	2.43	2.50	2.50	75	75	16
Cadmium	2.50	2.40	2.50	2.43	2.50	2.50	100	100	1.7
Chromium	17.9	20.3	19.6	19.0	22.4	22.9	2,500	2,500	45
Cobalt	8.80	10.1	9.66	9.42	10.8	11.1	8,000	350	23
Copper	31.6	44.7	37.8	34.6	33.5	33.0	2,500	2,500	2,500
Lead	8.65	23.0	16.2	13.7	7.83	8.09	1,000	350	80
Mercury	0.200	0.200	0.200	0.200	0.200	0.200	20	20	9.4
Molybdenum	5.00	4.81	5.00	4.85	5.00	5.00	3,500	3,500	380
Nickel	12.4	14.6	13.9	13.4	15.4	15.7	2,000	2,000	1,500
Selenium	5.00	4.81	5.00	4.85	5.00	5.00	100	100	100
Silver	5.00	4.81	5.00	4.85	5.00	5.00	500	500	380
Thallium	5.00	4.81	5.00	4.85	5.00	5.00	700	111	0.78
Vanadium	36.6	41.2	39.7	38.9	43.9	46.1	2,400	2,400	390
Zinc	58	796	224	110	62.9	67.0	5,000	5,000	5,000
PETROLEUM HYDROCARBONS (mg/kg) MET	HOD M8015G/M801	5D: NONE DETECTED	1						
TRPH (C4-C12)	10.0	10.0	10.0	10.0	10.0	10.0	NS	1,000	10
*TPH Diesel (13-22)	10.0	10.0	10.0	10.0	10.0	10.0	NS	10,000	10
*TPH Heavy (23-40)	100.0	100.0	100.0	100.0	100.0	100.0	NS	NS	500
*TPH Diesel + Heavy (13-40)	100.0	100.0	100.0	100.0	100.0	100.0	NS	NS	500

Notes:

ND: Not Detected

NA: Not Analyzed

NS: Not Specified

*Threshold for average TPH for Disposal in a lined cell = 50,000 mg/kg

 ###
 Left justified and shaded: Not detected. Value shown is Practical Quantitation Limit.

 ###
 Right-Justified and no shading: Qualtifiable result shown.

TABLE 22 (Cont.d) SUNSHINE CANYON LANDFILL GENERATOR: SOUTHERN CALIFORNIA EDISON / AMADOR SUBSTATION SOIL SAMPLING **ESTIMATED ANNUAL QUANTITY: 100 Tons**

SAMPLE	HA7-COMP	HA8-COMP	НА9-СОМР	HA10-COMP	HA11-COMP	Hazardous	Lined Cell	Unrestricted
DATE SAMPLED	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	Level	Limit	Limit
	American	American	American	American	American			-
SAMPLED BY	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	(mg/kg)		
DATE ANALYZED	10/27-28/20	10/27-28/20	10/27-28/20	10/27-28 & 11/2/20	10/27-28/20			
METALS (mg/kg) METHOD 6010B/7000CAM	:							
Antimony	5.00	5.00	5.00	4.95	5.00	500	380	30
Arsenic	29.4	5.68	13.0	52.9	8.65	500	500	12
Barium	151	129	136	144	148	10,000	10,000	5,200
Beryllium	2.50	2.50	2.50	2.48	2.50	75	75	16
Cadmium	2.50	2.50	2.50	2.48	2.50	100	100	1.7
Chromium	22.3	19.2	21.1	21.9	21.7	2,500	2,500	45
Cobalt	10.7	9.76	9.98	9.95	10.4	8,000	350	23
Copper	38.1	30.3	30.5	45.9	34.1	2,500	2,500	2,500
Lead	12.1	11.4	8.84	10.7	10.4	1,000	350	80
Mercury	0.198	0.200	0.200	0.200	0.200	20	20	9.4
Molybdenum	5.00	5.00	5.00	4.95	5.00	3,500	3,500	380
Nickel	15.2	13.5	14.4	14.4	15.0	2,000	2,000	1,500
Selenium	5.00	5.00	5.00	4.95	5.00	100	100	100
Silver	5.00	5.00	5.00	4.95	5.00	500	500	380
Thallium	5.00	5.00	5.00	4.95	5.00	700	111	0.78
Vanadium	44.3	41.0	41.6	42.1	42.1	2,400	2,400	390
Zinc	88.6	67.3	56.1	95.7	88.6	5,000	5,000	5,000
METALS (mg/L) METHOD 6010B-STLC:								
Arsenic	NA	NA	NA	3.03	NA	500	500	12
PETROLEUM HYDROCARBONS (mg/kg) MET	HOD M8015G/M801	5D: NONE DETECTED)					
TRPH (C4-C12)	10.0	10.0	10.0	10.0	10.0	NS	1,000	10
*TPH Diesel (13-22)	10.0	10.0	10.0	10.0	10.0	NS	10,000	10
*TPH Heavy (23-40)	100.0	100.0	100.0	100.0	100.0	NS	NS	500
*TPH Diesel + Heavy (13-40)	100.0	100.0	100.0	100.0	100.0	NS	NS	500

Notes:

ND: Not Detected

NA: Not Analyzed

NS: Not Specified

*Threshold for average TPH for Disposal in a lined cell = 50,000 mg/kg

 ###
 Left justified and shaded: Not detected. Value shown is Practical Quantitation Limit.

 ###
 Right-Justified and no shading: Qualtifiable result shown.

TABLE 23 SUNSHINE CANYON LANDFILL GENERATOR: SOUTHERN CALIFORNIA EDISON / AMADOR SUBSTATION SOIL SAMPLING ESTIMATED ANNUAL QUANTITY: 100 Tons

SAMPLE	HA1-0.5'	HA1-0.5'DUP	HA1-2.0'	HA2-0.5'	HA2-2.0'	HA3-0.5'	HA3-2.0'	Hazardous	Lined Cell	Unrestricted
DATE SAMPLED	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	Level	Limit	Limit
	American	American	American	American	American	American	American	(ma/ka)		
SAMPLED BY	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	(mg/kg)		
DATE ANALYZED	10/29/20	10/29/20	10/29/20	10/29/20	10/29/20	10/29/20	10/29/20			
MOISTURE CONTENT (%wt) METHOD ASTM	-D2216:									
Moisture Content	21.3	17.5	29.9	12.7	6.06	9.73	7.13	NS	50	NS
POLYCHLORINATED BIPHENYLS (PCBs) (mg/	kg) METHOD 8082: N	ONE DETECTED								

Notes:

ND: Not Detected

NA: Not Analyzed

NS: Not Specified

Right-Justified and no shading: Qualtifiable result shown.

TABLE 23 (Cont'd) SUNSHINE CANYON LANDFILL GENERATOR: SOUTHERN CALIFORNIA EDISON / AMADOR SUBSTATION SOIL SAMPLING ESTIMATED ANNUAL QUANTITY: 100 Tons

SAMPLE	HA4-0.5'	HA4-2.0'	HA5-0.5'	HA5-2.0'	HA6-0.5'	HA6-2.0'	Hazardous	Lined Cell	Unrestricted
DATE SAMPLED	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	Level	Limit	Limit
	American	American	American	American	American	American	(ma/ka)		
SAMPLED BY	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	(mg/kg)		
DATE ANALYZED	10/29/20	10/29/20	10/29/20	10/29/20	10/29/20	10/29/20			
MOISTURE CONTENT (%wt) METHOD ASTM	I-D2216:								
Moisture Content	9.83	8.41	1.40	9.19	4.46	3.94	NS	50	NS
POLYCHLORINATED BIPHENYLS (PCBs) (mg/	'kg) METHOD 8082: N	ONE DETECTED							

Notes:

ND: Not Detected

NA: Not Analyzed

NS: Not Specified

##Right-Justified and no shading: Qualtifiable result shown. Only detected Organics are shown.

TABLE 23 (Cont'd) SUNSHINE CANYON LANDFILL GENERATOR: SOUTHERN CALIFORNIA EDISON / AMADOR SUBSTATION SOIL SAMPLING ESTIMATED ANNUAL QUANTITY: 100 Tons

SAMPLE	HA7-0.5'	HA7-2.0'	HA8-0.5'	HA8-2.0'	HA9-0.5'	HA9-2.0'	Hazardous	Lined Cell	Unrestricted
DATE SAMPLED	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	Level	Limit	Limit
	American	American	American	American	American	American	(ma/ka)		
SAMPLED BY	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	(mg/kg)		
DATE ANALYZED	10/29/20	10/29/20	10/29/20	10/29/20	10/29/20	10/29/20			
MOISTURE CONTENT (%wt) METHOD ASTM	-D2216:								
Moisture Content	10.0	18.9	19.6	21.5	11.6	8.17	NS	50	NS
POLYCHLORINATED BIPHENYLS (PCBs) (mg/	kg) METHOD 8082: N	IONE DETECTED							

Notes:

ND: Not Detected

NA: Not Analyzed

NS: Not Specified

##Right-Justified and no shading: Qualtifiable result shown. Only detected Organics are shown.

TABLE 24 SUNSHINE CANYON LANDFILL GENERATOR: SOUTHERN CALIFORNIA EDISON / AMADOR SUBSTATION SOIL SAMPLING ESTIMATED ANNUAL QUANTITY: 100 Tons

SAMPLE	C1	C2	C3	C4	C5	C6	Hazardous	Lined Cell	Unrestricted
DATE SAMPLED	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	Level	Limit	Limit
	American	American	American	American	American	American	(ma/ka)		
SAMPLED BY	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	(iiig/ kg)		
DATE ANALYZED	10/29/20	10/29/20	10/29/20	10/29/20	10/29/20	10/29/20			
MOISTURE CONTENT (%wt) METHOD ASTN	I-D2216:								
Moisture Content	2.28	2.36	3.32	2.45	6.73	6.18	NS	50	NS
POLYCHLORINATED BIPHENYLS (PCBs) (mg/	kg) METHOD 8082: N	ONE DETECTED							

Notes:

ND: Not Detected

NA: Not Analyzed

NS: Not Specified

##Right-Justified and no shading: Qualtifiable result shown. Only detected Organics are shown.

TABLE 24 (Cont'd) SUNSHINE CANYON LANDFILL GENERATOR: SOUTHERN CALIFORNIA EDISON / AMADOR SUBSTATION SOIL SAMPLING ESTIMATED ANNUAL QUANTITY: 100 Tons

SAMPLE	C7	C8	С9	Hazardous	Lined Cell	Unrestricted
DATE SAMPLED	10/26/20	10/26/20	10/26/20	Level	Limit	Limit
	American	American	American	(ma/ka)		
SAMPLED BY	Enviromental	Enviromental	Enviromental	(mg/kg)		
DATE ANALYZED	10/29/20	10/29/20	10/29/20			
MOISTURE CONTENT (%wt) METHOD ASTM	-D2216:					
Moisture Content	5.69	3.65	5.51	NS	50	NS
POLYCHLORINATED BIPHENYLS (PCBs) (mg/	kg) METHOD 8082: N	ONE DETECTED				

Notes:

ND: Not Detected

NA: Not Analyzed

NS: Not Specified

Right-Justified and no shading: Qualtifiable result shown.

TABLE 25 SUNSHINE CANYON LANDFILL GENERATOR: SOUTHERN CALIFORNIA EDISON / AMADOR SUBSTATION SOIL SAMPLING ESTIMATED ANNUAL QUANTITY: 100 Tons

SAMPLE	HA1-COMP	HA2-COMP	НАЗ-СОМР	НА4-СОМР	HA5-COMP	HA6-COMP	Hazardous	Lined Cell	Unrestricted
	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	10/26/20	Lovol	Limit	Limit
	10/20/20	10/20/20	10/20/20	10/20/20	10/20/20	10/20/20	Level	LIIIIL	Linint
	American	American	American	American	American	American	(mg/kg)		
SAMPLED BY	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental	Enviromental			
DATE ANALYZED	10/27-28/20	10/27-28/20	10/27-28/20	10/27-28/20	10/27-28/20	10/27-28/20			
METALS (mg/kg) METHOD 6010B/7000CAM									
Antimony	4.81	4.81	5.00	5.00	5.00	5.00	500	380	30
Arsenic	31.2	65.2	18.7	64.2	5.75	3.31	500	500	12
Barium	113	112	105	120	96.9	132	10,000	10,000	5,200
Beryllium	2.40	2.45	2.50	2.50	2.50	2.50	75	75	16
Cadmium	2.40	2.45	2.50	2.50	2.50	2.50	100	100	1.7
Chromium	18.3	18.8	17.7	18.5	14.2	18.8	2,500	2,500	45
Cobalt	9.11	9.24	9.04	9.25	7.72	9.37	8,000	350	23
Copper	31.0	31.9	28.7	26.7	36.2	27.5	2,500	2,500	2,500
Lead	14.40	12.3	9.00	5.00	20.5	9.90	1,000	350	80
Mercury	0.200	0.200	0.200	0.200	0.200	0.200	20	20	9.4
Molybdenum	4.81	4.90	5.00	5.00	5.00	5.00	3,500	3,500	380
Nickel	12.9	13.3	12.5	12.9	10.1	13.0	2,000	2,000	1,500
Selenium	4.81	4.90	5.00	5.00	5.00	5.00	100	100	100
Silver	4.81	4.90	5.00	5.00	5.00	5.00	500	500	380
Thallium	4.81	4.90	5.00	5.00	5.00	5.00	700	111	0.78
Vanadium	37.8	38.8	37.5	38.5	31.2	38.6	2,400	2,400	390
Zinc	104	110	85.4	51.8	80.3	57.2	5,000	5,000	5,000
METALS (mg/L) METHOD 6010B-STLC:	•	•		-	-	•		-	
Arsenic	NA	3.88	NA	3.96	NA	NA	5.0	NS	NS
PETROLEUM HYDROCARBONS (mg/kg) MET	HOD M8015G/M801	5D: NONE DETECTED							

Notes:

ND: Not Detected

NA: Not Analyzed

NS: Not Specified

*Threshold for average TPH for Disposal in a lined cell = 50,000 mg/kg

 ##
 Left justified and shaded: Not detected. Value shown is Practical Quantitation Limit.

 ##
 Right-Justified and no shading: Qualtifiable result shown.

TABLE 25 (Cont'd) SUNSHINE CANYON LANDFILL GENERATOR: SOUTHERN CALIFORNIA EDISON / AMADOR SUBSTATION SOIL SAMPLING ESTIMATED ANNUAL QUANTITY: 100 Tons

SAMPLE	HA7-COMP	HA8-COMP	HA9-COMP	Hazardous	Lined Cell	Unrestricted
DATE SAMPLED	10/26/20	10/26/20	10/26/20	Level	Limit	Limit
SAMPLED BY	American Enviromental	American Enviromental	American Enviromental	(mg/kg)		
DATE ANALYZED	10/28-29/20	10/28-29/20	10/28-29/20			
METALS (mg/kg) METHOD 6010B/7000CAM	:					
Antimony	5.00	4.95	5.00	500	380	30
Arsenic	3.63	38.6	25.8	500	500	12
Barium	122.0	126	105	10,000	10,000	5,200
Beryllium	2.50	2.48	2.50	75	75	16
Cadmium	2.50	2.48	2.50	100	100	1.7
Chromium	18.4	18.6	18.1	2,500	2,500	45
Cobalt	9.13	9.28	8.65	8,000	350	23
Copper	25.9	26.7	27.1	2,500	2,500	2,500
Lead	13.4	7.7	11.80	1,000	350	80
Mercury	0.200	0.198	0.200	20	20	9.4
Molybdenum	5.00	4.95	5.00	3,500	3,500	380
Nickel	12.5	12.7	12.7	2,000	2,000	1,500
Selenium	5.00	4.95	5.00	100	100	100
Silver	5.00	4.95	5.00	500	500	380
Thallium	5.00	4.95	5.00	700	111	0.78
Vanadium	37.4	39.1	35.2	2,400	2,400	390
Zinc	63.3	55.5	72.9	5,000	5,000	5,000
PETROLEUM HYDROCARBONS (mg/kg) MET	HOD M8015G/M801	5D: NONE DETECTED)			

Notes:

ND: Not Detected

NA: Not Analyzed

NS: Not Specified

*Threshold for average TPH for Disposal in a lined cell = 50,000 mg/kg

Left justified and shaded: Not detected. Value shown is Practical Quantitation Limit.
 ## Right-Justified and no shading: Qualtifiable result shown.

APPENDIX A

SAMPLING AND ANALYSIS PLAN

APPENDIX A

SAMPLING AND ANALYSIS PLAN FOR THE SUNSHINE CANYON LANDFILL

Water quality monitoring and sampling for the Sunshine Canyon Landfill (SCLF) located within the jurisdiction of the Los Angeles RWQCB Region was conducted by Geo-Logic Associates (GLA). Sampling and analyses were performed in general accordance with Monitoring and Report Program No. CI-2043 of Order R4-2008-0088 issued specifically for the SCLF. A brief summary of the protocols for sample collection is presented below.

Chemical analyses were performed by Eurofins Calscience., a state-certified laboratory. Groundwater, underdrain, leachate, and stormwater samples were analyzed for the list of parameters summarized in Table 1, which also present the laboratory analytical methods used and the sample frequency. Copies of the certificates of analyses and Chain-of-Custody records for the samples collected the current monitoring period are included in Appendix B.

GROUNDWATER SAMPLING

The sampling protocols listed below were generally followed during groundwater sampling operations:

- Upon arrival at the wellhead, each monitoring point was inspected for evidence of tampering and/or vandalism, and the well identification (I.D.) was recorded.
- With the exception of well DW-1, all of the groundwater monitoring wells at the SCLF that are currently sampled are equipped with dedicated bladder pumps. Well construction details including: well depth, depth of pump, well diameter, and top of casing elevation are summarized in Table 5.
- Well DW-1 is under artesian conditions. A drop tube has been installed in the well that allows water to discharge into sample containers under the pressure of water in the well.
- The water level was measured directly using a weighted water-level indicator (sounder) to an accuracy of 0.01 foot. Prior to measuring the water level, the sounder was decontaminated using a non-phosphate soap solution, followed by two rinses with deionized water. The wells were then sounded and the initial water level and the total depth of the well (if obtainable) were recorded on a Well Data Sheet.

Groundwater Sampling Using Low Flow Sampling Methods

- All wells at the SCLF that are equipped with bladder pumps were sampled using low flow purge and sample methods.
- A water level meter was used during low-flow purging to measure changes in water level to

permit operation of submersible pumps at discharge rates that minimized water level decline.

- Discharged water was routed through a sampling chamber equipped with probes for measuring dissolved oxygen, electrical conductivity, pH, temperature, ORP, and turbidity. When three consecutive readings of these field parameters had stabilized to within 10% of each other, with no discernible upward or downward trend, the water quality was determined to be stable and samples were collected.
- Samples were collected into approved pre-labeled containers provided by the laboratory, and each container was filled completely and immediately capped. Samples for VOC analysis were filled by pouring the sample down the sides of the container to minimize aeration, and these sample vials were capped with no airspace.
- Upon collection, samples were placed immediately in an ice-filled cooler for transport to a state-certified testing laboratory. Samples were kept chilled (at about 4°C) until delivery.
- A completed Chain-of-Custody form, detailing sample identification numbers, date and time of collection, requested analyses, and other project information accompanied each sample to the laboratory. The Chain-of-Custody and Sample Container/Analysis Request forms are provided in Appendix B.

LYSIMETER SAMPLING

The SCLF is equipped with two pan lysimeters, LY-6 and LY-7, that are located beneath leachate sumps in the lined portions of the landfill. Lysimeters are equipped with dedicated electric submersible pumps that are activated based on liquid levels in the pan. Water is pumped to a discharge line that conveys lysimeter liquids to an onsite water treatment facility. Sampling protocols are as follows:

- Upon arrival at each lysimeter, GLA inspected the discharge line to determine if water was actively being extracted.
- The lysimeter pumps are not equipped with flow controls, so water is transferred from the discharge line to a clean 5-gallon bucket. Field parameters are recorded from the bucket.
- Lysimeter liquids are transferred from the bucket into approved pre-labeled containers provided by the laboratory, and each container was filled completely and immediately capped. Samples for VOC analysis were filled by pouring the sample down the sides of the container to minimize aeration, and these sample vials were capped with no airspace.
- As with groundwater samples, lysimeter liquid samples were placed immediately in an icefilled cooler for transport to a state-certified testing laboratory. Samples were kept chilled (at about 4°C) until delivery.

A completed Chain-of-Custody form, detailing sample identification numbers, date and time
of collection, requested analyses, and other project information accompanied each sample
to the laboratory. The Chain-of-Custody and Sample Container/Analysis Request forms are
provided in Appendix B.

SUBDRAIN AND EXTRACTION TRENCH SAMPLING

The SCLF is equipped with four subdrain sampling locations: Subdrain N, CC2-PER, CC2-3A, and CC2-5C and a groundwater extraction trench. Samples from CC2-PER, CC2-3A, and CC2-5C are composited in the field as one sample "Combined Subdrains". Sample methods are as follows:

- Samples from Subdrain N and the groundwater extraction trench are collected at sampling ports near the inlet to the water treatment facility. Samples are collected by opening the port and directly filling each laboratory-supplied container.
- Subdrains CC2-3A and CC2-5C are equipped with electric submersible pumps that operate automatically based on liquid levels in the subdrain sumps. Water is discharged to a one-inch poly hose that connects to a two-inch HDPE pipeline that conveys liquids to the water treatment facility. Samples are collected by disconnecting the one-inch poly hose from the two-inch HDPE pipe and filling a clean five gallon bucket. Subdrain liquids are transferred from the bucket into laboratory-supplied containers.
- Subdrain CC2-PER is also equipped with electric submersible pumps that operates automatically based on liquid levels in the subdrain sump. Water is discharged to a twoinch camflex hose that transfers liquid into a 55-gallon carbon treatment unit, which then discharges to the water treatment facility. Samples are collected by disconnecting the camflex hose and filling a decontaminated five-gallong bucket. Field parameters are measured in the bucket, and then the subdrain liquid is transferred to laboratory-supplied containers.
- As with groundwater samples, all containers are completely filled, capped, labeled, and kept chilled at approximately 4°C in a laboratory-supplied cooler. All sampling is conducted under the same chain-of-custody protocol describe above.

LEACHATE SAMPLING

Leachate at the SCLF is monitored at "LR-2R" and "Deep Leachate".

- Deep Leachate samples are collected from a sample port before leachate reaches the above ground storage tank farm. The port is opened to allow liquids to fill laboratory-supplied sample containers.
- Location LR-2R is sampled with a new, disposable bailer through a riser connected to the leachate sump. Liquids were transferred from the bailer into laboratory-supplied

containers.

- A representative sample was collected and analyzed in the field for EC, odor, ORP, pH, temperature, turbidity, and sheen and recorded on a Well Data Sheet.
- Sample collection, preservation, and Chain-of-Custody procedures described above for groundwater were also adhered to for leachate sample collection.

QUALITY ASSURANCE/QUALITY CONTROL SAMPLING

Quality assurance/quality control (QA/QC) sampling is performed using trip blanks, field blanks, equipment blanks (for non-dedicated equipment), and duplicate samples. For field blanks and equipment blanks, laboratory supplied water is used to collect the sample. In addition, to these field samples, the QA/QC program also included laboratory method blank analyses. Field QA/QC samples were analyzed only for volatile organic compounds EPA Test Method 8260. Laboratory method blanks were conducted for all constituents that were monitored during the monitoring period.

FIELD EQUIPMENT CALIBRATION

Proper maintenance, calibration, and operation of each field instrument will be the responsibility of the field personnel and the instrument technicians assigned to the project. All instruments and equipment used during the program will be maintained, calibrated, and operated according to the manufacturers' guidelines and recommendations.

Field equipment will be calibrated prior to use in the field as appropriate. The calibration procedures will follow standard manufacturers' instructions to ensure that the equipment is functioning within established tolerances and as required by the project. A record of field calibration of analytical instruments will be maintained in the calibration logbook by field personnel. Copies of the instrument manuals and other equipment calibration records (e.g., thermometers, sounders) will be maintained. Any notes on unusual results, changing of standards, battery charging, and operation and maintenance of the field equipment will be included in the calibration logbook.

All instruments are to be stored, transported, and handled with care to preserve equipment accuracy. Damaged instruments will be taken out of service immediately and not used again until a qualified technician repairs and recalibrates the instruments.

Calibration Procedures

Equipment calibration is performed in accordance with the manufacturer's instructions, and calibration checks will be performed each day prior to the start of work. Calibration of rental equipment will be performed by a qualified technician prior to shipment of the equipment.

Calibration standards will be used once. Spent calibration liquids will be placed in plastic bottles and transported off-site for disposal. A brief summary of the calibration procedures for field measurement equipment is provided below:

- <u>pH:</u> Calibration for pH is performed prior to commencement of sampling activities, using standard buffer solutions having pH values of 4, 7, and 10. Calibration checks for pH values using buffer solutions of 4, 7, and 10 will be performed daily. If the reading varies more than 0.10 of a unit between calibration checks, the meter will be recalibrated.
- <u>Conductivity</u>: Calibration for conductivity is performed prior to commencement of sampling activities, using potassium chloride standard solutions with conductivity values of 1,000 and 10,000 microsiemens/cm. The meter must read within one percent of full-scale to be considered calibrated. Calibration checks for conductivity will be performed daily.
- <u>Turbidity Meter</u>: Turbidity range calibration is performed prior to initiation of sampling activities, using turbidity gel standards of 0, 4.4, 45, and 483 NTUs. The meter is also checked daily during the sampling period with the standard most representative of the anticipated turbidity of the purged groundwater (typically 0 NTUs to 10 NTUs). If the reading varies by more than one unit between calibration checks, the meter will be recalibrated. Multiple physical conditions can cause variations in readings, including bubbles in the sampled water, wet or dirty sample containers, a wet or dirty lens, a wet or dirty optical sensor, or leakage of incidental light into the sample chamber.
- <u>Multiple Sensor Meter (pH, Dissolved Oxygen, Conductivity, Temperature, Turbidity</u>): A multiple sensor meter may be used for multiple parameter measurements during sampling. Calibration is performed prior to initiation of sampling activities, using manufacturer auto-calibration solution. If any of the readings are outside of the manufacturers specifications, the meter will be recalibrated for the parameter outside of the calibration range. Calibration checks will be performed daily.

Equipment not listed herein will be calibrated according to manufacturers' recommendations and/or generally accepted practice. Calibration procedures will be documented for the project file. Instruments for which calibration cannot be easily checked will be either tested against another instrument of a similar type, or will be returned to the manufacturer for appropriate calibration. If tested against another instrument capable of making the same measurements, variation between instruments must not exceed five percent. If readings vary more than five percent, the instrument will be returned to the manufacturer for calibration.

Scheduled periodic calibration of testing equipment will not relieve field personnel of the responsibility of employing properly functioning equipment. If equipment malfunction is suspected, the device will be removed from service, tagged so that it is not inadvertently used, and the appropriate personnel notified so that re-calibration can be performed or a substitute piece of equipment can be obtained.

Equipment Maintenance

Maintenance responsibilities for field equipment are coordinated through an instrument technician who is responsible for ensuring that available equipment and instrumentation are ready for use, and that returned equipment is inspected, serviced, and returned to available inventory in a timely manner. Maintenance during use is the responsibility of the field team using the equipment. Calibration logbooks contain information on instrument maintenance, calibration, and repair. A separate logbook is maintained for each instrument. The paperwork will include a detailed listing of the item that was cleaned/replaced, and the make/model/serial number for the particular piece of equipment.

APPENDIX B

FIELD SAMPLE COLLECTION LOGS AND LABORATORY ANALYTICAL DATA REPORTS

Relinquished by:	Relinquished by:	Custody Seals Intact: Yes No	Special Instructions/QC Requirements & Comments:	Non-Hazard Flammable Skin Irritant	Are any samples from a listed EPA Hazardous Waste? Plea Comments Section if the lab is to dispose of the sample.	Preservation Used: 1= lce, 2= HCl; 3= H2SO4; 4=HNO3				min Blank	Eight Blank	DA-V(B)	Du-S(A)	DW-ICE)	TOW-IA	Sample Identification	Project Name: Concern Streep the	Phone:	City/State/Zip: CA 92127	Address: Inc. Con the address of the	Company Name:		Irvine, CA 92614 (c.) Phone: 949.261.1022 Fax:	17461 Derian Ave ELAVO F.W.S
Company:	Company:	Custody Seal*No.: Company:		Poison B	ase List any EPA Waste Codes 1	; 5=NaOH; 6= Other				V - V		6260	8460	1 10844 1	2/22/21 10840 6	Sample Sample C-com Date Time G=Grab	1 week 2 days 1 day	TAT if different from Below 2 weeks	CALENDAR DAYS	Analysis Turnarou	Tel/Fax:	Regulatory Frogram.	* lle lest	2)
Date/Time:	Date/Time: Re	Date/Time: Re		Inknown	for the sample in the	0				1/2	C att	2 2	2		Ger 1) p. We fee Matrix Cont. to the control of the cont	ample (Y / S / MSD ()	N) Y / N	NORKING DAYS	Ind Time	Lab C	UW INPUES	*	Chain of (
eceived in Laboratory by:	eceived by:	eceived by:	Dealer Terms (00): Oh	Return to Client		mple Disposal / A fee may be				X		×	×	×		EPA 85 TDS,	2608 - (160	Take			ontact:			Custody Record
Company:	Company:	Company:	d.	posal by Lab		assessed if samples are retain															arrier:	ato. 1 100 10.	•	081258
Date/Time:	Date/Time:	Date/Time:	Therm ID No .	Months		d longer than 1 month)										Sample Specific Notes:	Job / SDG No.:	Lab Sampling:	Walk-in Client:	Sampler: W. Colling	of COCs	COC No:	THE LEADER IN ENVIRONMENTAL TESTING	TestAmerica

Geologists • Hydrogeologists • Engineers

Geo-L

ic

00

GROUNDWATER MONITORING PROGRAM

WELL DATA SHEET

Site Name:	(
Well I.D.:	
Collected By:	
Casing Diameter (inches):	
Starting Water Level:	
Total Depth (feet):	
Water column (feet):	
Screen Length (feet):	
Sample Method:	М

Sanghive Gra
DW-1
Pes
4
Tese
/
Micro Purge Low Flow

JSUGUH

RR

Ro. 10216 5818 B) OFC P MO) YES

Horiba Model S/N:

TIME	GALLONS PURGED	WATER LEVEL	рН	CONDUCTIVITY ms/cm	TURBIDITY NTU	D.O. mg/L	TEMPERATURE °C	O.R.P. mV
	Gras	~	4.53	4.42	4.5	0.77	17,64	-121
	1							
							-	
_								

dedicated discharge **Purge Sampling Rates:** ne Vin wa 000 Cic G 21 100

Well condition: P hu 2 50 Additional Info/Comments: <

Signature:

Name:

Jali

ne

GROUNDWATER MONITORING WELL INSPECTION	

Facility:	Sushing your well ID: DI	N-1	Date: J-73	-21
Access:	Accessibility: Good:	Fair:	Poor:	
	Vicinity of well clear of weeds and/or debri	s:	Yes:	No: 1
	Presence of depressions or standing water	around well:	Vec.	No: 2
e	Remarks: Soil & definit ine	the trail		
Concrete I	Pad:			
	Good:	Inadequate:		
	Presence of depressions or standing water	around well:	Yes:	No:
	Remarks:			
Protective	Outer Casing: Material:	Meral		
	Condition of Protective Casing:	Good:	Damaged: Ce	world
	Condition of Locking Cap:	Good:	Damaged:	
	Condition of Lock:	Good:	Damaged:	
	Condition of Weepholes:	Good:	Damaged:	
	Remarks:			
Well Riser:	Material	PUC		
	Condition of Riser:	Good:	Damagodi	
	Condition of Riser Can	Good:	Damaged	
	Measurment reference point:	Vos:	Damaged:	
	Remarks	res	NO: _	
	Nemarka.			
Dedicated	Pump: Type:	Tube		
	Condition: Good:	Damaged: M	AN	lissing: MA
	Pumping Rate (gpm):	Current (Hz): _	Ala	
	Remarks:			
Field Certif	ication: Bar Salua	o Gialiania	オール	-71
	Signed	Title	iv o us	

Geologists • Hydrogeologists • Engineers

GROUNDWATER MONITORING PROGRAM WELL DATA SHEET

Site Name:

Well I.D.:

Collected By:

Casing Diameter (inches):

Starting Water Level:

Total Depth (feet):

Water column (feet):

Screen Length (feet):

Sample Method:

Horiba Model S/N:

Name:

2020,1006 Project No.: Sampling Date: 991 Purge start Time: 0942 Purge Stop time: Sampling (Well Recovery) Time: 10) 0948 (B)0952 16-05 Ending Water Level (feet): 2 Total Purged (gallons): NO Duplicate Sample: YES

Micro Purge	Low Flow
28	SUGUL

TIME	GALLONS PURGED	WATER LEVEL	рН	CONDUCTIVITY ms/cm	TURBIDITY NTU	D.O. mg/L	TEMPERATURE °C	O.R.P. mV
oazu	ik	13.88	6,99	1.68	3.7	4.63	19,20	-15
0927	3/4	(4.3)	6-96	1.67	5.6	1.60	(9,29	-44
0930	\	(4.91	6.97	1.67	4.2	6	19.64	-97
6933	114	15.36	6.91	1.67	5.2	E	19173	-122
0936	112	15.74	6-81	1.66	5.6	¢	19.50	-128
0939	1314	15.98	6.82	1.66	5.3	¢-	19.76	-136
0942	2	16.32	6.81	1.66	5.6	¢-	19.81	- 142
			-					
Purge Sampling F	ates: RSX	- set	6 35	+ R130	Dit	7,0		

T 13 Rakar ev 2 Well condition: UPC'S toldene only -X etee Si Cero appy Additional Info/Comments: wouds

Signatur Re 0

GROUN	NDWATE	TORING	G WELL	INSPEC	TION REP	ORT	

Access: Accessibility: Good: Fair: Poor:	Facility:	Schuspfiel Cra, Well ID: DW-5 Date: 2/8	3/21
Accessibility: Good: Fair: Poor: No: Vicinity of well clear of weeds and/or debris: Yes: No:	Access:		,
Vicinity of well clear of weeds and/or debris: Yes: No: Presence of depressions or standing water around well: Yes: No: C Remarks: Integrity: Good: Inadequate: No: C Presence of depressions or standing water around well: Yes: No: C No: C Remarks: Concrete Pad: Inadequate: Yes: No: C No: C Remarks: Concrete of depressions or standing water around well: Yes: No: C No: C Remarks: Condition of depressions or standing water around well: Yes: No: C No: C Protective Outer Casing: Good: Material: Meerch Damaged: Condition of Protective Casing: Good: Damaged: Condition of Lock: Good: Damaged: Condition of Lock: Good: Damaged: Condition of Neepholes: Good: Damaged: Condition of Riser: Good: Damaged: Condition of Riser: Condition of Riser: Good: Condition of Riser: No: Condition of Riser: No: Condition of Riser: No: Condition of Ri		Accessibility: Good: Fair: Poor:	
Presence of depressions or standing water around well: Yes: No: C Remarks: Integrity: Good: Inadequate: Yes: No: K Presence of depressions or standing water around well: Yes: No: K K Remarks: Concrete Pad: Indequate: Yes: No: K Presence of depressions or standing water around well: Yes: No: K K Remarks: Condition of standing water around well: Yes: No: K K Protective Outer Casing: Material: Meegal Damaged: Damaged: Damaged: Damaged: Damaged: Damaged: Condition of Locking Cap: Good: Damaged: Damaged: Damaged: Damaged: Condition of Weepholes: Good: Damaged: Damaged: Damaged: Condition of Riser: Good: Material: PVC No: Condition of Riser Cap: Good: Material: No: Condition of Riser Cap: Rood: Mamaged: Mo: Condition: Rood: Mamaged: Mo: Condition: Rood: Mo: Missing: Missing:		Vicinity of well clear of weeds and/or debris: Yes:	No:
Remarks: Concrete Pad: Integrity: Good: Presence of depressions or standing water around well: Yes: Remarks: Concrete Yord 75 word w53/654 Protective Outer Casing: Material: Condition of Protective Casing: Good: Condition of Protective Casing: Good: Condition of Locking Cap: Good: Condition of Locking Cap: Good: Condition of Lock: Good: Condition of Veepholes: Good: Remarks: Well Riser: Well Riser: Material: Condition of Riser Cap: Good: Condition of Riser Cap: Good: Measurment reference point: Yes: No:		Presence of depressions or standing water around well: Yes:	No:
Concrete Pad: Indegrity: Good: Inadequate:		Remarks:	
Concrete Pad: Integrity: Good: Inadequate: Presence of depressions or standing water around well: Yes: No: Mo: Remarks: Concrete Yord TS work Vr5/5/2 No: Mo: Protective Outer Casing: Material:			
Integrity: Good: Inadequate: Presence of depressions or standing water around well: Yes: No: Remarks: Concrept Yord TS wat VTS ible Protective Outer Casing: Material: Mercal Condition of Protective Casing: Good: Damaged: Condition of Protective Casing: Good: Damaged: Condition of Locking Cap: Good: Damaged: Condition of Lock: Good: Damaged: Condition of Kiser: Good: Damaged: Condition of Riser: Good: Damaged: Condition of Riser: Good: Damaged: Condition of Riser Cap: Good: Damaged: Measurment reference point: Yes: No: No: Remarks: Damaged: Missing:	Concrete f	Pad:	
Presence of depressions or standing water around well: Yes: No: No: Remarks: Concrect yord rs well vrsible Protective Outer Casing: Material: Mercal Condition of Protective Casing: Good: Damaged:		Integrity: Good: Inadequate:	
Remarks: Condition of Protective Casing: Good: Damaged:		Presence of depressions or standing water around well: Yes:	No:
Protective Outer Casing: Material:		Remarks: Concrete pand is not visible	
Condition of Protective Casing: Good: Damaged: Condition of Locking Cap: Good: Damaged: Condition of Locking Cap: Good: Damaged: Condition of Lock: Good: Damaged: Condition of Veepholes: Good: Damaged: Remarks: Good: Damaged: Well Riser: Material: PVC Condition of Riser: Good: Damaged: Condition of Riser: Good: Damaged: Condition of Riser: Good: Damaged: Condition of Riser Cap: Good: Damaged: Measurment reference point: Yes: No: Remarks: No:	Protective	Outer Casing: Material: Megal	
Condition of Locking Cap: Good: Damaged:		Condition of Protective Casing: Good: Damaged	:
Condition of Lock: Good: Damaged:		Condition of Locking Cap: Good: Damaged	:
Condition of Weepholes: Good: Damaged: Remarks: Material: PVC Well Riser: Material: PVC Condition of Riser: Good: Damaged: Condition of Riser Cap: Good: Damaged: Measurment reference point: Yes: No: Remarks: No:		Condition of Lock: Good: Damaged	•
Remarks: Well Riser: Material: PVC Condition of Riser: Good: Damaged: Condition of Riser Cap: Good: Damaged: Measurment reference point: Yes: No: Remarks: No:		Condition of Weepholes: Good: Damaged	:
Well Riser: Material: Condition of Riser: Good: Damaged: Condition of Riser Cap: Good: Damaged: Measurment reference point: Yes: No: Remarks: No:		Remarks:	
Condition of Riser: Good: Damaged:	Well Riser:	Material:PVC	
Condition of Riser Cap: Good: Damaged: Measurment reference point: Yes: No: Remarks: No:		Condition of Riser: Good: Damaged	
Measurment reference point: Yes: No: Remarks: No:		Condition of Riser Cap: Good: Damaged	
Remarks: Dedicated Pump: Type: Standolow Condition: Good Damaged: Missing: Pumping Rate (gpm): Missing: Missing: Remarks: Field Certification: Standolow Standolow		Measurment reference point: Yes: No	
Dedicated Pump: Type: Managed: Condition: Good: Damaged: Pumping Rate (gpm): Managed: Remarks: Field Certification:		Remarks:	
Condition: Good: Damaged: Missing: Pumping Rate (gpm): Current (Hz): N Remarks: Field Certification: Gut Managed: Z 23 223	Dedicated	Pump: Type: Blacklock	
Pumping Rate (gpm): Current (Hz): N/A Remarks:		Condition: Good: Damaged:	Missing:
Remarks: Field Certification: Bert John Gui Monace 2/23/22		Pumping Rate (gpm): Current (Hz):	
Field Certification: But Alan Gui Manage 2/23/22		Remarks:	
Field Certification: (Sent Jetan Gui Manage) 2/23/22			1
Signed	Field Certif	ication: (Sen) the Singer	2/23/22

ASSOCIATES GIC

FIELD CALIBRATION DOCUMENTATION FORM

Date/Time **Physical Condition of Unit** Instrument Make/Model # LOCATION (Site/Facility Name) Sunshive Syn, PROJECT NAME / NUMBER 5026, Calibration by 950 Satifies Protocol? Successful? Calibration Calibration Pre. Cal (Y/N) Kes 5.02 Yes 4,00 μd 4,55 (4.49 mg/Kg) Conductivity (µMhos/cm) \$825494H 4,50 Electrical Turbidity Croso (NTU) p 0 R (mg/L or %) 9.64 10.41 DO **Guidance Remarks** Signature or initials criteria in the sampling enter YES or NO Did calibration meet protocol? (Y or N) Comments

GeoLogic Associates

Effective June 1, 2009

GROUNDWATER MONITORING PROGRAM WATER LEVEL SURVEY RECORD SHEET

SITE NAME:	Sunshing Co	NUON		
DATE:	03-04-202)			
PROJECT NUMBER	Soal, 1006	1 101	с	
FIELD PERSONNEL:	B. Salingsi M	Canabell		
WELL ID	CONSTRUCTION TOTAL	ACTUAL TOTAL	DEPTH TO WATER	COMMENTS
	DEPTH (TD)	DEPTH (TD)	(DTW)	······
111-1			16.03	
mm-2A			.33.73	
MW-2B			17.66	
Mw-5	· · · · · · · · · · · · · · · ·		18.62	
mh-6			16.33	
MW-8			17.55	
mw-g			2236	
MW-12R			17.71	
mn. 14			1407	
DN-1			TOC	
DW-2			2555	
04-3			15724	
Dw-4			27 707	и
Dive			1255	
			2.25	
CM-SR GD3			224.00	
CIN-IN			12.77	
CM-IOR			49.13	
CM-IIR			20.46	
PZ-1			- 94.38	
pz-2		5°*	120.70	
PZ-3	•		223.94	
PZ-4			110.37	
EW-2			23.08	
En-3			17.46	
EW-4			1711	
OM-3			15.48	
			,	
REMARKS:				
SIGNATURE: M. B. C	-1000	m.L	10. Comp	0)/
first -	- port		- Carpon	t t

Geologists • Hydrogeologists • Engineers

ASSOCIATES

odic

GROUNDWATER MONITORING PROGRAM WELL DATA SHEET

Site Name: Well I.D.: Collected By:

Geo

Casing Diameter (inches):

Starting Water Level:

Total Depth (feet):

Water column (feet):

Screen Length (feet):

Sample Method:

Horiba Model S/N:

Low Flow

25412BDD

Micro Purge

1-52

Project No.: Sampling Date: Purge start Time: Purge Stop time: Sampling (Well Recovery) Time: Ending Water Level (feet): Total Purged (gallons): Duplicate Sample:

TIME	GALLONS PURGED	WATER LEVEL	рН	CONDUCTIVITY ms/cm	TURBIDITY NTU	D.O. mg/L	TEMPERATURE °C	O.R.P. mV
742	1.0	13.34	6.27	3.99	287.0	1.50	1676	- 81
7:45	1.5	13.44	6.25	3,96	141.6	1.30	16.90	-77
7:47	1.75	13.49	6.24	3.94	86.1	1,31	16.98	-71
7:49	2.0	13.53	6.23	3.94	76.2	1.28	1691	-70
7:51	2.25	13.58	6.23	3.93	69.6	1.27	16.96	-68
7:53	2.50	13.61	6.20	3.93	59.4	1.25	17.00	-67
				~				

Purge Sampling Rates:	25.051	reful!	30	dischargo	5
water very	muday				

Well condition: OK-

.07 Seef 1. 4 wel WG) hurr CV Additional Info/Comments: 0 in remove ev 105 n D 97 999 y 0 imphil Name: Signature:

acility:	Sinshine Cyn Well ID:	CM- GR3 Dat	te: <u>3-9.21</u>	
ccess:				
	Accessibility: Good:	Fair: <u> </u>	or:	\checkmark
	Vicinity of well clear of weeds and/or de	bris:	Yes: 1	No:
	Presence of depressions or standing wat	er around well:	Yes: 1	No:
	Remarks: Vegetition or	and well and	path de th	e net
hell	WO BUTTLEN SCE	removel approx	4.0' of so.) key
oncrete P	ad: Integrity: Good:	inadequate:		
	Presence of depressions or standing wat	er around well:	Yes: I	No:
	Remarks: CONCRAFE	ped is hus	crn DI	
			1140	
Protective	Outer Casing: Material:	In etc.		
	Condition of Protective Casing:	Good:	Damaged:	
	Condition of Locking Cap:	Good:	Damaged: <u>V</u>	-
	Condition of Lock:	Good:	Damaged:	
	Condition of Weepholes:	Good:	Damaged:	
	Remarks: Well lid d	lomaged well	not sec	ire
Well Riser:	Material:	PVC		
	Condition of Riser:	Good: V	Damaged:	
	Condition of Riser Can	Good:	Damaged:	
	Measurment reference point:	Yes:	No:	
	Remarke.			
	-	÷		
Dedicated	Pump: Type: <u>61</u>	adde		
	Condition: Good:	Damaged:	Missir)g:
	Pumping Rate (gpm):	Current (Hz):	VA	
	Remarks:			
· •	ab ill	F. ald To.L	3.9	· Z1
Field Certi	tication: The Long	piere (cor)	Data	

C-2

5

Geologists . Hydrogeologists . Engineers

ASSOCIATES

ĬC

GROUNDWATER MONITORING PROGRAM WELL DATA SHEET

Site Name:

Geo

Well I.D.:

Collected By:

Casing Diameter (inches):

Starting Water Level:

Total Depth (feet):

Water column (feet):

Screen Length (feet):

Sample Method:

Low Flow

Micro Purge

Project No.: Sampling Date: Purge start Time: Purge Stop time: Sampling (Well Recovery) Time: Ending Water Level (feet): Total Purged (gallons): Duplicate Sample:

Horiba Model S/	/N:	1.35/m	SYINBOI	2					
TIME	GALLONS PURGED	WATER LEVEL	рН	CONDUCTIVITY ms/cm	TURBIDITY NTU	D.O. mg/L	TEMPERATURE °C	O.R.P. mV	
9:38	1.0	49.44	6.65	2.77	0.0	1.62	20.07	-144	
9:42	1.5	49.51	6.64	2.78	0.0	1.47	20.24	-136	
9:44	1.75	49.54	6.64	2.78	0-0	1.40	20.30	-136	
9:46	2.0	49.55	6.64	2.78	0.0	1.38	2037	-136	
9:48	2.25	11	6.63	2.76	O.O	1.35	2041	-1.37	
9:50	2,56	V	6.63	2.76	0.0	1.34	20.45	-13É	
						-			
				•					
			· .						
				a					
Purge Sampling R	lates: 5(2.psi	rofill	40	disc	berge	12		
Water	u clear	with	g Str	ions od	0/				
Well condition:	Well condition: UK								
Additional Info/Comments: C/Ear/ mile/ broezy									
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			A-	
Name: M	. Le C	anpho	XI	Signature	· h	the .	Cast		

Facility:	Denshire Cyn Well ID: (M-JUR Da	ite: <u>3.</u>	1-21
Access:	Accessibility: Good: Fair: Po Vicinity of well clear of weeds and/or debris: Presence of depressions or standing water around well: Remarks:	oor: Yes: Yes:	No: No:
Concrete P	ad: Integrity: Good: Inadequate: Presence of depressions or standing water around well: Remarks: .	Yes:	No:
Protective	Outer Casing:       Material:       Medel         Condition of Protective Casing:       Good:       V         Condition of Locking Cap:       Good:       V         Condition of Lock:       Good:       V         Condition of Veepholes:       Good:       V         Remarks:       V       V	Damaged: Damaged: Damaged: Damaged:	
Well Riser:	Material:       PVC         Condition of Riser:       Good:       V         Condition of Riser Cap:       Good:       V         Measurment reference point:       Yes:       V         Remarks:       Image: Condition of Riser Cap:       Image: Condition of Riser Cap:	Damaged: Damaged: No:	
Dedicated	Pump:       Type:       Bladder         Condition:       Good:       Damaged:         Pumping Rate (gpm):       MA       Current (Hz):         Remarks:	NA	Missing:
Field Certi	fication: Mule Caryfull Environmente Signed Title	1 Ten	<u>3-4-2</u> ) Date

# C-2

# **GROUNDWATER MONITORING WELL INSPECTION REPORT**

1

-

Geologists • Hydrogeologists • Engineers

ASSOCIATES

Geo-Logic

### GROUNDWATER MONITORING PROGRAM WELL DATA SHEET

Site Name:

Well I.D.:

Collected By:

Casing Diameter (inches):

Starting Water Level:

Total Depth (feet):

Water column (feet):

Screen Length (feet):

Sample Method:

Horiba Model S/N:

Sunshine cyn Cm - IIR HDCmC 4 20.46 30.7010.24

Project No.: Sampling Date: Purge start Time: Purge Stop time: Sampling (Well Recovery) Time: Ending Water Level (feet): Total Purged (gallons): Duplicate Sample:

1006 C 2 NO YES

Blank, Laken at this ner

Micro Purge Low Flow YINBOO 2 W 1

TIME	GALLONS PURGED	WATER LEVEL	рН	CONDUCTIVITY ms/cm	TURBIDITY NTU	D.O. mg/L	TEMPERATURE °C	O.R.P. mV	
2:02	5	20.92	6.04	4.24	0.0	1.83	15.12	60	
もうひ	$\left  \right\rangle$	21.07	5.91	4.01	00	:52	1524	82	
8:26	1.25	21.15	5.86	3.95	0.0	145	15.28	, 91	
8:31	1.5	21.24	5.81	3.90	0.0	,40	15.34	100	
8:38	1.75	21.31	5.78	3.88	0.0	,38	15.35	-105-	+
8:43	2.0	21.37	5.75	3.85	0.0	.36	15.37	109	
									_
Purge Sampling	Rates: 30	DSI	efI	25	disci	harjo	6		
	0								
Well condition:									
Heavy vegeteten around the nell requile 4X4 the get the the									
Additional Into	comments:	- VIE							
Name:	M.L.	- ala	$\gamma$	Signati	ure: Ma	10	Cern	P	

	GROUNDWATER MONITO	RING WELL I	VSPECTION R	EPORT
acility:	Singhind Cyn Well ID: C	m-IIR	Date: <u>3</u> ~ 4	1.21
ccess:		))		
	Accessibility: Good:	Fair: <u>V</u>	Poor:	-/
•	Vicinity of well clear of weeds and/or debris:		Yes:	No: <u>V</u>
	Presence of depressions or standing water an	round well:	Yes:	No:
λ	Remarks: Required 4X4 -	to get to	the nell a	nd backup
dven	nage channel, Vere le	tion in Vi	cincle of.	the ner
oncrete P	ad: Jone Good: 0	Inadequate:	,	
	Presence of depressions or standing water at	round well:	Yes:	No:
	Remarks: Half of the	concreile	pad is	burrel
rotective	Outer Casing: Material:	mete!		
	Condition of Protective Casing:	Good:	Damaged:	
	Condition of Locking Cap:	Good:	Damaged:	
	Condition of Lock:	Good:	Damaged:	
	Condition of Weepholes:	Good:	Damaged:	
	Remarks:			
Vell Riser:	Material:	IVU		
	Condition of Riser:	Good: V	Damaged:	
	Condition of Riser Cap:	Good:	Damaged:	
	Measurment reference point:	Yes:	No:	
	Remarks:			
		•		
Dedicated	Pump: Type: <u>Blad</u>	le		
	Condition: Good:	Damaged:	ang	Missing:
	Pumping Rate (gpm): NA	Current (Hz)	:	
	Remarks:			
· · · ·	The could	Fold To	26	3-4-21
-ield Cert	Signed	Title	<u>¥</u> [	Date

C-2

ş

1

3

Geologists • Hydrogeologists • Engineers

Geo-Logic

### GROUNDWATER MONITORING PROGRAM WELL DATA SHEET

Site Name:		Sunshine	2 Gyn	Project No.:		S	020.1006	
Well I.D.:		_mn-	-1	Sampling Date:			3-10-21 3-10-2	
Collected By:		<u> </u>		Purge start Time:			6:59	
Casing Diameter (inches):		4	•	Purge S	Stop time:		7.1	9
Starting Water Level:		16	2.04	Sampli	ng (Well Reco	overy) Time:	16.1	E7:30
Total Depth (fee	t):	28.8	36	Ending	Water Level	(feet):	-16.1	1
Water column (f	eet):		2.82	Total P	urged (gallon	s):	25	,
Screen Length (	feet):			Duplica	te Sample:		YES (	NO
Sample Method:	:	Micro Purge	Low Flow					
Horiba Model S/	'N:	4-52/ W	SYLWBO	) Blc	nks 1	Leh. G	+ the	las l'
TIME	GALLONS PURGED	WATER LEVEL	рН	CONDUCTIVITY ms/cm	TURBIDITY NTU	D.O. mg/L	TEMPERATURE °C	O.R.P. mV
7:07	liO	16:08	6.50	3.04	(a)	100	18.95	5-117
7:11	1,5	16:10	6.53	3.05	5.6	.92	19,04	-123
7:13	1.75	16:1)	6.54	3.04	50	187	19.12	-125
7:15	2.0	1)	6.55	304	5.1	. 22 .	19.17	~134
7:17	2.25	Y	6.56	3.04	46	,80	19,19	-136
7:19	2.50	K	6.56	3.04	4.0	179	19.17	-137
						-		
						1		
Purce Sampling I	Pater: 20	nci r	- 11 ·	30 d	schemo	12.		
water cor	ntein) V	ellowish	below b	rown c	elov wi-	th cr	odce	
Well condition:	ÛK							
Additional Info/0	Comments:	Clarkin		old.	YCIV	)	ŝ	
		a vely	1	ue-		1 2		
Name: M.	KO CAR	Vod an		Signatur	e: Mk	e ca	nhell	1
	mike Campiker mit mit apply							

<u> in the second s</u>	•	
Facility: วิ	well ID: MW-1	Date: 3-10-24
Access:	Accessibility: Good: V Fair:	Poor
	Vicinity of well clear of weeds and/or debrist	Ves: V
	Presence of depressions or standing water around wells	
	Remarket	No
	nemarks.	
Concrete P	ad:	
	Presence of depressions or standing water around well:	Vec: No:
	Remarker Country of Country and Country water alound went	1
	remarks. Concrete paulis no	t Visible
Protective	Outer Casing: Material: <u>Metel</u>	
	Condition of Protective Casing: Good:	Damaged:
	Condition of Locking Cap: Good:	Damaged:
	Condition of Lock: Good:	Damaged:
	Condition of Weepholes: Good:	Damaged:
	Remarks:	
Well Riser:	Material: PVC	
	Condition of Riser: Good: V	Damaged:
	Condition of Riser Cap: Good:	Damaged:
	Measurment reference point: Yes: V	No:
	Remarks:	
Dedicated	Pump: Type: <u>Blade</u>	
	Condition: Good: Damaged:	Missing:
	Pumping Rate (gpm): Current (Hz):	MN
	Remarks:	
Field Cartil	ication: Thele Complete Rold Tech	3-10-21
	Signed Title	Date

GROUNDWATER MONITORING WELL INSPECTION REPORT

1

C-2

Geo-I	Logic	6. #						
Geologists • Hydrogeol	ogists • Engineers							
		GROUND	WATER MO WELL D	ONITORINO	G PROGRA	M		
Site Name:		SUNShine CANYON		Project No.:			5020.1006	
Well I.D.:		MW.	-5	Sampl	ing Date:		3-9-2	/
Collected By:			/	_ Purge	start Time:		1147	
Casing Diamete	r (inches):			Purge	Stop time:		1200	
Starting Water L	_evel:	18	.67	Sampl	ing (Well Reco	very) Time:	120	12
Total Depth (fee	et):	2	5.65	Ending	g Water Level (	(feet):	19.0	3
Water column (f	eet):	7	.03	Total F	Purged (gallon	s):	21	2
Screen Length (	(feet):			Duplic	ate Sample:		YES	NO
Sample Method	: (	Micro Purge	Low Flow	N	Marte	1 701		
Horiba Model S/	′N:	4-52	- W6699	FRS #	BIGAR.	5 19/0	Lea M	ere
TIME	GALLONS PURGED	WATER LEVEL	рН	CONDUCTIVITY ms/cm	TURBIDITY NTU	D.O. mg/L	TEMPERATURE °C	O.R.P. mV
1154	ł	19-03	7.32	3.64	15.5	2.13	22.14	-115
1157	12	19-03	7.30	3.61	15.0	2.13	22.10	-122
1158	13/4	11	7:28	3.61	14.8	2.10	22.28	-123
1200	2	1(	7:28	3.59	14.7	2.02	22.20	-124
1201	21/4	ι(	7.28	3.60	14.6	2:00	22.25	-125
1202	21/2	10	7:28	3.60	14.5	1.98	22.27	-126
Purge Sampling R	lates: 20	PSi		Refill	-30		Dis-11	

Well condition: OK, Faller Branches Mext	to Well, Hid to carry EaniPment and
Bottles Due to open trench from ong	oing construction on site.
Additional Info/Comments: Cloudy, Cool 14/10/4	:
	4

Name: Chrisfign Vglenznelg

Signature:

dista valora

	GROUNDWATER MONITORING	WELL INSPECTION R	EPORT
Facility:	SHASHINE CANTAL Well ID: MW-	5 Date: <u>3</u> -9	-2
Access:		I/	
	Accessibility: Good: Fair:	Poor:	1
	Vicinity of well clear of weeds and/or debris:	Yes:	No:
	Presence of depressions or standing water around we Remarks: Hgd to Calry 911 Ea Wil	II: Yes: K PMENT DYE FO CONST BANKON	No:
	Entrance, Tree Branches	and Concrete gud the	Phalt ground
Concrete I	ad: Integrity: Good: Inade	quate:	A
	Presence of depressions or standing water around we	II: Yes:	No:
	Remarks: CONCRETE PEL N	of Visible	
Protective	Outer Casing: Material: Meter	71	
	Condition of Protective Casing: Good:	Damaged:	
	Condition of Locking Cap: Good:	Damaged:	
	Condition of Lock: Good:	Damaged:	n ng si da na ng na ng na ng
	Condition of Weepholes: Good:	Damaged:	
	Remarks:		
Well Riser	Material:	2	
	Condition of Riser: Good:	Damaged:	
	Condition of Riser Cap: Good:	Damaged:	
	Measurment reference point: Yes:	No:	
	Remarks:		
Dedicated	Pump: Type: BIGGE	(	
	Condition: Good: Dan	naged:	Vissing:
	Pumping Rate (gpm):	Current (Hz):	
	Remarks:		
Field Certi	ication:	Field Tech 3-9.	-2.1

Geologists · Hydrogeologists · Engineers

Geo-Loq ASSOCIATES

ĬС

### **GROUNDWATER MONITORING PROGRAM** WELL DATA SHEET

Site Name:

Well I.D.:

Collected By:

Casing Diameter (inches):

Starting Water Level:

Total Depth (feet):

Water column (feet):

Screen Length (feet):

Sample Method:

Horiba Model S/N:



Project No.: Sampling Date: Purge start Time: Purge Stop time: Sampling (Well Recovery) Time: Ending Water Level (feet): Total Purged (gallons): **Duplicate Sample:** 



Micro Purge Low Flow STILBOR 'Lh

TIME	GALLONS PURGED	WATER LEVEL	рН	CONDUCTIVITY ms/cm		D.O.	TEMPERATURE °C	O.R.P. mV
9.09	.5	16.88	6.66	3.56	3.1	2165	21.05	-296
9:22	1.0	17.17	6.65	3.41	14	.96	21.23	-312
9:28	1.25	17.20	6.63	3.43	0.0	.80	21.41	-328
9:35	1.50	17.21	6.61	3.39	0.0	.73	21.46	-332
9:41	1.75	17.22	6.60	3.37	0.0	.70	2149	-335
							-	
			-					
				,				
Purge Sampling	Rates: 2	5.psi	r	ex.11 3	30 0	lischer	0,	
water 1 ca blacks	2 most	in c	(ecv	with a	= Str	ony c	odd ci	<u>vd</u>
Well condition:	ok ha	d to c	orry son	ple bottle	er end	equippent	down s	100 cnd
Additional Info/Comments: Clarda i mild. Slishi hreper :								
								4((05))
Name:	nike c	ampbel	)	Signatur	e: Mill	Con		net



	GROUNDWATER MONIT	ORING WELL I	NSPECTION REPO	ORT
cility: 🤇	Sunshine Gyn Well ID: 1	Mw-6	Date: 3-8-5	
ccess:	Accessibility: Good:	Fair:	Poor:	
ø	Vicinity of well clear of weeds and/or deb	ris:	Yes:	NO:
	Presence of depressions or standing wate	r around well:	Yes:	No:
equi	Remarks: Gorvied Somp print down a slope a well to somp	pd long di	+ Cani vesele hun	). Je
oncrete	Pad: Integrity: Good:	Inadequate:		$\mathcal{O}$
	Presence of depressions or standing wate	er around well:	Yes:	No:
	Remarks:			
rotective	e Outer Casing: Material:	netet		
	Condition of Protective Casing:	Good:	Damaged:	
	Condition of Locking Cap:	Good:	Damaged:	
	Condition of Lock	Good: V	Damaged:	
	Condition of Meenholes:	Good:	Damaged:	
	Pomarke:			
	nemans.	•		
Well Rise	er: Material:	PVC		
	Condition of Riser:	Good:	Damaged:	
	Condition of Riser Cap:	Good:	Damaged:	
	Measurment reference point:	Yes:	No:	
	Remarks:			
Dedicate	ed Pump: Type: 5/a	de		
	Condition: Good:	Damaged:	M	issing:
	Pumping Rate (gpm):	Current (	Hz):/	
	Remarks:			
		Δ		
Field Ce	artification: mile Complet	Field Te	v 3-	15-8-
neiu ce	Signed	Title	D	ate

C-2

3
ASSOCIATES

Geo-Logic

#### **GROUNDWATER MONITORING PROGRAM** WELL DATA SHEET

Site Name: Well I.D.:

Collected By:

Casing Diameter (inches):

Starting Water Level:

Total Depth (feet):

Water column (feet):

Screen Length (feet):

Sample Method:

Name:

Horiba Model S/N:



Project No.: Sampling Date: Purge start Time: Purge Stop time: Sampling (Well Recovery) Time: Ending Water Level (feet): Total Purged (gallons): **Duplicate Sample:** 



Micro Purge Low Flow 4-67 WG-6P8G-RG

TIME	GALLONS PURGED	WATER LEVEL	рН	CONDUCTIVITY ms/cm	TURBIDITY NTU	D.O. mg/L	TEMPERATURE °C	O.R.P. mV
0939	1/2	17.99	7.84	1.99	0.0	10.51	21.67	-360
0945	3/4	18.02	7.83	2.00	0.0	8.52	21.90	-364
0951		18.07	7.83	2.00	0.0	7.31	22.24	-366
0957	11/4	18.12	7.82	2.00	0.0	7.14	22.23	-368
1003	11/2	18:14	7.82	1.99	0.0	7.08	22:25	-370
1009	13/4	18.17	7.82	1.99	0.0	7.04	22:25	7371
	×.							
						54 g 5		
								-
Purge Sampling R	tates: 30	PSi	R	efill 31	5		dis 6	

Well condition:	OF	Carried	Equipment	to wall.	
		C			

Additional Info/Comments: C.O. HEAVY 10 SLIDN'S SU SMPIL hristign valenzuela

Signature:

	GROUNDWATER MONITORING	WELL INSPECTION REPORT
Facility:	SUAShing (91701 Well ID: MV-1	3R Date: 3-9-21
Access:	Accessibility: Good: Fair: Vicinity of well clear of weeds and/or debris: Presence of depressions or standing water around we Remarks: CQNied SAMPling EQUIT	Poor: Yes: No: ell: Yes: No: PMCAT TO WE (
Concrete F	Pad: Integrity: Good: Inade Presence of depressions or standing water around we Remarks:	equate: ell: Yes: No:
Protective	Outer Casing:       Material:       Merial:         Condition of Protective Casing:       Good:	V  Damaged:    V  Damaged:    V  Damaged:    V  Damaged:
Well Riser:	Material: Condition of Riser: Good: Condition of Riser Cap: Good: Measurment reference point: Yes: Remarks:	PI/C         Damaged:            Damaged:          Damaged:            No:          No:
)edicated	Pump: Type: <u>Badde</u> Condition: Good: <u>M</u> Dat Pumping Rate (gpm): <u>M/A</u> Remarks:	maged: Missing: Current (Hz):
ield Certif	ication:	Field Tech 3-9-2-1

,

ASSOCIA	TESJ	•				*		
Geologists • Hydrogeolo	gists • Engineers		2014 - C.					
		GROUND	WATER MO WELL DA		PROGRA	Μ		ż
Site Name: Well I.D.:		Sunst	ne Cyp	Project Sampli	No.: ng Date:	~	<u>Soze</u> , <u>3-8-</u> ;	1006
Collected By: Casing Diameter	(inches):	<u></u> <u>4</u>		Purge s Purge s	start Time: Stop time:		10:1-	2
Starting Water L Total Depth (feel	evel:		06	Sampli Ending	ng (Well Reco Water Level (	very) Time: feet):	14.5	8
Water column (fo Screen Length (f	eet): feet):		3.27	Total P Duplica	urged (gallons ate Sample:	s):	VES.	2 NO
Sample Method: Horiba Model S/	N: 41	Micro Purge	LOW FLOW	0.	licte	lekn g-	t this h	ell
TIME	GALLONS PURGED	WATER LEVEL	рН	CONDUCTIVITY ms/cm	TURBIDITY NTU	D.O. mg/L	TEMPERATURE °C	O.R.P. mV
10:25	1.0	14.51	6.45	3.06	0,5	1.63	20.70	-154
0.29	1.5	14.54	6.41	3.06	0.5	143	20.78	-158
0:33	1.0	14.57	6.59	3.06	0.9	1.3/ 1.39	2678	-160
10:35	2.25	11	6.38	3.06	0.3	1.35	20.80	-161
10.37	2,50	)	6.30	3.06	0.2	1.33	2081	- 162
							C.	
								~
Purge Sampling R	Rates:	i pri	ref.11	25	dis	1 horge	9	
Well condition:	CV Scrylin comments: M	testig	ment cr Clor h	ph butt	v dan 12/ Dr	e sli efzi	up te tl	l hl'
Name:	in Com	obol	k	Signatur		10 1		

GROUNDWATER MON	ITORING WELL IN	ISPECTION REPO	ORT
Facility: Sunshine Cyp Well ID:	MW-14	Date: <u>3-8-</u>	Zr ·
Access: Accessibility: Good: Vicinity of well clear of weeds and/or de Presence of depressions or standing wat Remarks: Corr; ed Sca Slope Jo He well Concrete Pad: Integrity: Good: Presence of depressions or standing wat Remarks:	Fair: ebris: ter around well: pling equipment inadequate: ter around well:	Poor: Yes: Yes: I t down c Yes:	No: <u>V</u> No: <u>V</u> No: <u>V</u>
Protective Outer Casing: Material: Condition of Protective Casing: Condition of Locking Cap: Condition of Lock: Condition of Weepholes: Remarks:	$\frac{M}{Good:} \frac{}{}$ $\frac{}{Good:} \frac{}{}$ $\frac{}{Good:} \frac{}{}$	Damaged: Damaged: Damaged: Damaged:	
Well Riser: Material: Condition of Riser: Condition of Riser Cap: Measurment reference point: Remarks:	Good: Good: Yes:	Damaged: Damaged: No:	
Dedicated Pump: Type: <u>Blc</u> Condition: Good: <u>V</u> Pumping Rate (gpm): <u>V</u> Remarks:	Damaged: Current (Hz):	Mis:	sing:
Field Certification: Mule Compell	Field Tec Title	h <u>3-</u> Dat	9. 2.1 e

-

1

.

ł

Geo-Logic Geologists • Hydrogeologists • Engineers

### GROUNDWATER MONITORING PROGRAM WELL DATA SHEET

;

Site Name.: Well I.D.: Collected By: Casing Diameter (i Starting Water Lew Total Depth (feet): Water column (feet Screen Length (fee Purge Volume (gal	Sn); ( nches); el:  t):  t):  lons);	hire Cyr )w~1 nc 4 toc /		Project No.: Sampling Dat Purge Start Ti Purge Stop tin Sampling Tim Ending Water Total Purged PID/FID Readi Duplicate San	e: me: ne: e: Level (feet): (gallons): ing: nple:	5020. 3-8-5 (. 	1006 2x 5 
Horiba Model S/N:	len:	52/454	IVBOP				
GALLONS PURGED	WATER LEVEL	рН	CONDUCTIVITY ms/cm	TURBIDITY NTU	D.O. mg/L	TEMPERATURE °C	O.R.P. mV
		8.55	3.72	4.2	2.60		-188
Purge Sampling Rate Took Sig Jup by dr Well condition: Ch	is: Scmp niticati	les cell time d	eden 1 -0 (.))	from He e	discher bottles	of the	2
Additional Info/Com	ments: Pcr Compte	thy cl	ordy j	Signature:	brooze	Ca	l

GROUNDWATER MONI	TORING WELL	INSPECTION REP	ORT
icility: Sushiel Cyr Well 1D:	DV-1	Date: 3-8	2,
Accessibility: Good: Vicinity of well clear of weeds and/or det Presence of depressions or standing water Remarks: Sfonding Waster Cway from the n oncrete Pad: Integrity: Good: Presence of depressions or standing water	Fair: bris: er around well: / CPPYOX/ e.Y Inadequate: er around well:	Poor: Yes: Yes: MGLEM 20F	No: No: `+ No: V
Remarks: otective Outer Casing: Material: Condition of Protective Casing: Condition of Locking Cap: Condition of Lock: Condition of Weepholes: Remarks:	<u>Good:</u> Good: Good: Good: Good:	Damaged: Damaged: Damaged: Damaged:	crrcdal
'ell Riser: Material: _ Condition of Riser: Condition of Riser Cap: Measurment reference point: Remarks:	Good: V Good: V Yes: MA	Damaged: Damaged: No:	
edicated Pump: Type: Dro Condition: Good: Pumping Rate (gpm): Remarks:	Damaged: Current (	Mi:	ssing:
ield Certification: Mule Constrell	Field Tech	3.	-8.21

5

ŧ

ASSOCIATES

#### **GROUNDWATER MONITORING PROGRAM** WELL DATA SHEET

Site Name: Well I.D.: Collected By: Casing Diameter (inches): Starting Water Level:

Total Depth (feet):

Water column (feet):

Screen Length (feet):

Sample Method:

Horiba Model S/N:



Low Flow

Micro Purge

Project No.: Sampling Date: Purge start Time: Purge Stop time: Sampling (Well Recovery) Time: Ending Water Level (feet): Total Purged (gallons): **Duplicate Sample:** 

Soza. 1006 YES NO

WSYLVBD 2 4. 5 TIME GALLONS WATER CONDUCTIVITY TURBIDITY D.O. TEMPERATURE O.R.P. pН PURGED LEVEL °C mV ms/cm NTU mg/L 8:49 Ł .0 ()2 V 53 .4 28. 0 2 SID 03 28 0.3 DC 18. 2.0 10 O. O. 2 2.25 28.6 2 .29 18.1 9º0 0,0 20 J 2.56

C U ODSI dishersp C Purge Sampling Rates: Wa Ć odov

a Well condition: ł +10 ul, DG P-GVU C Additional Info/Comments: h 0020 crm

Name:

n.ke

Com

Signature:

	GROUNDWATER MONITORING WELL INSPECTION REPORT	
Facility:	Sinshine Cyp Well ID: DW-2 Date: 3-9.21	
Access: PC Concrete P	Accessibility: Good: Fair: Poor: Vicinity of well clear of weeds and/or debris: Yes: No: Presence of depressions or standing water around well: Yes: No: Remarks: VegeLation Grand Lell Monumal Cond H Le Le Lel Pad: Integrity: Good: Inadequate: Presence of depressions or standing water around well: Yes: No: Remarks: h clf of concrete pad is burned	,
Protective	e Outer Casing: Material: <u>Metd</u> Condition of Protective Casing: Good: <u>V</u> Damaged: Condition of Locking Cap: Good: <u>V</u> Damaged: Condition of Lock: Good: <u>V</u> Damaged: Condition of Weepholes: Good: <u>V</u> Damaged:	
Well Riser:	r: Material: PVC Condition of Riser: Good: Damaged: Condition of Riser Cap: Good: Damaged: Measurment reference point: Yes: No: Remarks:	
Dedicated	d Pump: Type: <u>Gladd</u> Condition: Good: <u>V</u> Damaged: Pumping Rate (gpm): <u>WA</u> Current (Hz): <u>MA</u> Remarks:	
Field Certi	tification: <u>Successful Field Tech</u> 3-9.2	21

\$

1

÷

Geo-Log

іc

#### **GROUNDWATER MONITORING PROGRAM** WELL DATA SHEET

Site Name:

Well I.D.:

Collected By:

Casing Diameter (inches):

Starting Water Level:

Total Depth (feet):

Water column (feet):

Screen Length (feet):

Sample Method:



Low Flow

Micro Purge

Project No.: Sampling Date: Purge start Time: Purge Stop time: Sampling (Well Recovery) Time: Ending Water Level (feet): Total Purged (gallons): **Duplicate Sample:** 



Horiba Model S/	N: L	1-52/ W	SYINB	DD				
TIME	GALLONS PURGED	WATER LEVEL	рН	CONDUCTIVITY ms/cm	TURBIDITY NTU	D.O. mg/L	TEMPERATURE °C	O.R.P. mV
9:26	1.0	158.36	7.15	1.96	1.0	1.70	18.20	-27
9:30	1,5	158,94	7.13	1.96	1.3	.93	18.89	-62
9.32	1.75	159.28	7.12	1.96	45	.70	1888	-77
9:34	2,0	159.40	7.11	1.96	1.2	,59	12.89	-92
9:30	2.25	159.65	5.11	1.96	1.0	.56	1894	-85
9:38	2,50	159.00	7.11	1.96	1.0	. 52	18.92	-26
			-					
					*****			
Purge Sampling F	Rates: 12	0.psi	red	-11 40	) dis	Uncrag	, 17	
Well condition:	OV							
Additional Info/C	Comments: (	lordy /	cooly	SOM	lair	)	3	
		A L			Ch 1	<u> </u>	PAL	1
Name: (h)	Ke Con	pkl		Signatur	" /mle	La	pbl/	

7	*			
Facility: 9	Well ID: _	DW-3_	Date: <u>3-10</u>	<u>-21</u>
Access:				
1	Accessionity: Good:	Fair:	Poor:	
	Vicinity of well clear of weeds and/or debr	ris:	Yes:	No:
	Presence of depressions or standing water	r around well:	Yes:	No:
	Remarks:			
Concrete P	ad:	inadequate:		
	Presence of depressions or standing water	around well:	Vec	No
	Romarker	, and went	103.	110.
	Nethalks.			
Protective	Outer Casing: Material:	metal		
	Condition of Protective Casing:	Good:	Damaged:	
	Condition of Locking Cap:	Good:	Damaged:	
	Condition of Lock:	Good:	Damaged:	
	Condition of Weepholes:	Good:	Damaged:	and the second
	Remarks:			
Wall Ricor:	Natorial	PVC		
wen niser.		Cond of	Damagada	
	Condition of Riser:		Damageo: _	
	Condition of Riser Cap:	Good:	Damaged:	
	Measurment reference point:	Yes: <u>V</u>	No:	
	Remarks:			
Dedicated	Pump: Type: 3/a(	de,		
	Condition: Good:	Damaged:	I	Vissing:
	Pumping Rate (gpm):	Current (Hz)	: NA	
	Remarks:			
	<u> </u>			
Field Certi	fication: Mule Cerrill	Field Test	1 3	-10-21
	Signed	Title		Date

## **GROUNDWATER MONITORING WELL INSPECTION REPORT**

1

Geo-Logic

#### GROUNDWATER MONITORING PROGRAM WELL DATA SHEET

Site Name:

Well I.D.:

Collected By:

Casing Diameter (inches):

Starting Water Level:

Total Depth (feet):

Water column (feet):

Screen Length (feet):

Sample Method:

Horiba Model S/N:



Low Flow

- WG698625

Micro Purge

Project No.: Sampling Date: Purge start Time: Purge Stop time: Sampling (Well Recovery) Time: Ending Water Level (feet): Total Purged (gallons): Duplicate Sample:

5020.1006 -9-202 e YES NO

	TIME	GALLONS PURGED	WATER LEVEL	рН	CONDUCTIVITY ms/cm	TURBIDITY NTU	D.O. mg/L	TEMPERATURE °C	O.R.P. mV
45	0755074	-12	123.13	9.14	5.40	0.0	1.84	23.17	-153
	0752	1	124.57	9.22	5.46	0.0	1.44	23.28	-149
	0755	11/4	125.24	9.22	5.40	0.0	1.35	23:30	-148
	0758	11/2	125.87	9.22	5.40	0:0	1.28	2337	-148
	0 802	13/4	126.49	9.22	5.40	0.0	1.24	23:39	7146
	0805	2	126.94	9-22	5.39	0.0	1.20	23.43	-145
						5			
					~		( 		
	Purge Sampling R	ates: BC	ipsi		Refill	-30	ζ.	Di5-1	9
					-				

Well condition:	OKI	carried	EquiPment q	nd Bottles	Across	Channel
Additional Info/	Comment	ts: Cloud	Y, Breezy, CO	4		ž

Christian Valenzap19 Name:

Signature:

North Valure

	GROUM	NDWATER	MONIT	ORING WELL I	SPECTION	REPORT	
Facility:	Shashi	ne caryon	Well ID:	PZ-2	Date: 3-9	-2[	
Access:	Accessibility:	Good:		Fair:	Poor:		
	Vicinity of we	ll clear of weeds	and/or debr	is:	Yes:	- No:	V
	Presence of d	epressions or sta	Inding water	around well:	Yes:	No:	V
	Remarks:	carried s	Gmplin,	9 Equipment	Across	CONCIE	te cian
Concrete F	Pad:	An best of the data and the second			ACI	ŕ //	- A.
	Integrity:	Good:		Inadequate:		A	
	Presence of d	epressions or sta	nding water	around well:	Yes:	No:	
	Remarks:	,	NO	(on crete	Pad		
Protective	Outer Casing:	M	aterial:	No.fg1			
	Condition of I	Protective Casing	;	Good:	Damaged:		
	Condition of l	ocking Cap:		Good:	Damaged:		
	Condition of L	.ock:		Good:	Damaged:		
	Condition of N	Neepholes:		Good:	Damaged:		
	Remarks:						
Well Riser:		M	aterial:	PVC			
	Condition of F	Riser:		Good:	Damaged:		
	Condition of F	Riser Cap:		Good:	Damaged:		
	Measurment	reference point:		Yes:	No:		
	Remarks:						
Dedicated	Pump:	Туре:	BIG	repler			
	Condition:	Good:	V	Damaged:		Missing:	
	Pumping Rate	(gpm):	(A	Current (Hz):	NIA		
	Remarks:						
Field Certif	ication:	Chuitan	VIII 7/4	Field TO	th 3-	9-21	
		Signed	- up	Title		Date	

~

Signed

Geo-Loa ASSOCIATES

ic

#### **GROUNDWATER MONITORING PROGRAM** WELL DATA SHEET

Site Name: Well I.D.:

Collected By:

Casing Diameter (inches):

Starting Water Level:

Total Depth (feet):

Water column (feet):

Screen Length (feet):

Sample Method:



Low Flow

Micro Purge

Project No.:	2
Sampling Date:	3
Purge start Time:	
Purge Stop time:	
Sampling (Well Recovery) Time:	
Ending Water Level (feet):	
Total Purged (gallons):	
Duplicate Sample:	



Horiba Model S/	N: U	1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1.52/ 1	SYIN BOD					
TIME	GALLONS PURGED	WATER LEVEL	рН	CONDUCTIVITY ms/cm	TURBIDITY NTU	D.O. mg/L	TEMPERATURE °C	O.R.P. mV
12:06	1.0	11257	7.00	1.39	19.5	1.55	22.47	-115
12:12	1,5	112.91	7.01	1.40	11.9	1.40	22.46	-115
12:15	1.75	113.05	7.01	1.40	10.4	1.32	22.44	-112
12:18	2.0	113.20	7.00	1.40	8.9	1.28	22.46	-112
12:22	2.25	113.36	7.00	1.40	9.1	1.26	22.44	-113
12:26	2.56	113.51	6.99	1.39	6.9	1.23	22.50	-115
Purge Sampling Rates, 90 p. si ref. 11 30 discherze 22 Water, Must leer mith of slight oder								

Well condition: cold preen C lorda Additional Info/Comments:

2e/1

Name: n.ke cn

CIL

Signature: ⁴ n

6 C

Facility:	Sunshind Cyn Well ID:	PZ-4	Date: 3-9.5	2
Access:	Accessibility: Good: Vicinity of well clear of weeds and/or de Presence of depressions or standing wat Remarks:	Fair: bris: er around well:	Poor: Yes: Yes:	No:
Concrete	Pad: Integrity: Good: <u>V</u> Presence of depressions or standing wat Remarks: Flyphmound	inadequate: er around well:	Yes:	No:
rotective	e Outer Casing: Material: Condition of Protective Casing: Condition of Locking Cap: Condition of Lock: Condition of Weepholes: Remarks:	Mele Fl Good: V Good: VA Good: MA Good: MA	Damaged: Damaged: Damaged: Damaged:	
Vell Riser	r: Material: Condition of Riser: Condition of Riser Cap: Measurment reference point: Remarks:	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \hline \\ \hline$	Damaged: Damaged: No:	
Dedicated	d Pump: Type: <u>Gl</u> Condition: Good: <u>J</u> Pumping Rate (gpm): <u>NA</u> Remarks:	Current (	N	Aissing:

ş

1

Geo-Logic

#### **GROUNDWATER MONITORING PROGRAM** WELL DATA SHEET

Site Name:

Well I.D.:

**Collected By:** 

**Casing Diameter (inches):** 

Starting Water Level:

Total Depth (feet):

Water column (feet):

Screen Length (feet):

Sample Method:

Sunshire CUN DM-S
mc
4
13.39
100.46
01.07
MC 4 1339 100.46 87.07

Low Flow

Micro Purge

Project No.:	
Sampling Date:	
Purge start Time:	
Purge Stop time:	_
Sampling (Well Recovery) Time:	
Ending Water Level (feet):	_
Total Purged (gallons):	
Duplicate Sample:	



Horiba Model S/	N:	1e-52/1	1541WB	50p				
TIME	GALLONS PURGED	WATER LEVEL	рН	CONDUCTIVITY ms/cm	TURBIDITY NTU	D.O. mg/L	TEMPERATURE °C	O.R.P. mV
9:05	1.0	14.95	8.05	1.61	4.3	1.43	17.75	-159
8.11	1,5	15.59	8.05	1.61	4.0	: 81	17.71	-165
8.14	1.75	15.91	8.06	1-61	2.1	177	17.81	-168
9.18	26	16.16	8.06	1.61	2.2	.75	17.84	-171
0:21	2.25	16.39	8.05	1.61	4.1	.73	17.80	-172
8:24	2,52	16-61	205	1.61	2.4	.72	17.69	-173
						×		
			-					-

Purge Sampling Rates: 65 psi rofill 30 discharso 20
water is mostly clear with a hydocarbon odor with a
light brown caller shall
Well condition: UL House with controls to the misters right nex te
the nell
Additional Info/Comments: Cloudia 1 Coldin Carp 1
Heavy effervesing In preserved VOCI difficultio achieve
Zero bear space
Name: Mike Compbell Signature: The Carpel

F	5. 2 0 C	AL.C	<b>5</b> A	~ D)
acility:	<u>Dinshire Cyn</u> Well ID:	DW-5	Date: <u>3~/0</u>	0-2)
Access:	Accessibility: Good:	Fair:	Poor:	Second conservation of the second
	Vicinity of well clear of weeds and/or de	ebris:	Yes:	No:
	Presence of depressions or standing wa	iter around well:	Yes:	No:
	Remarks:			
Concrete F	Pad:		V.	
	Integrity: Good:	Inadequate:		
	Presence of depressions or standing wa	ter around well:	Yes:	No:
	Remarks: CCNCrefe P	ad is bu	rried	
Protective	Outer Casing: Material:	Meter		
	Condition of Protective Casing:	Good:	Damaged:	
	Condition of Locking Cap:	Good:	Damaged:	
	Condition of Lock:	Good:	Damaged:	
	Condition of Weepholes:	Good: 🜙	Damaged:	
	Remarks:			
Well Riser:	Material:	PVC		
	Condition of Riser:	Good:	Damaged:	
	Condition of Riser Cap:	Good: J	Damaged:	
	Measurment reference point:	Yes: J	No:	
	Remarks:			
Dedicated	Pump: Type: P-	Jadde)		
	Condition: Good	Damaged'		Missing:
				0.
	Pumping Rate (gpm):	Current (H	z):(/	
	Remarks:			
		Fold Tol	2~	10.7
ieiu certh	have capped	rivir ievo		IV M

Geo-Logic

#### GROUNDWATER MONITORING PROGRAM WELL DATA SHEET

Site Name:

Well I.D.:

Collected By:

Casing Diameter (inches):

Starting Water Level:

Total Depth (feet):

Water column (feet):

Screen Length (feet):

Sample Method:

Horiba Model S/N:



Low Flow -52 W66-P86-R5

licro Purge

th

Project No.: Sampling Date: Purge start Time: Purge Stop time: Sampling (Well Recovery) Time: Ending Water Level (feet): Total Purged (gallons): Duplicate Sample:



TIME	GALLONS PURGED	WATER LEVEL	pH	CONDUCTIVITY ms/cm	TURBIDITY NTU	D.O.	TEMPERATURE	O.R.P.
0838	1/2	34.17	6.43	3.12	0.1	2.55	21.40	-28
0848		34.54	6.44	3.14	0.1	2.26	21.63	-41
0853	14	34.73	G-45	3-16	0.1	2.09	21.75	-47
0857	1/2	34.89	6.45	3.15	6.[	1.88	21.77	-49
0901	1314	35.03	6.46	3.16	0.1	1-82	21.85	-52
0905	2	55-15	6.46	3-17	0.1	1-79	21-82	1-54
						an a san an a		
	20	00		0 - 61.1				
Purge Sampling R	ates: 25	PSI		Kefi/1-	20		Dis-	6

Ok Well condition:

Additional Info/Comments: Cloye Y COOL BI	eeze, Had to Hike Eay & phent to well
pown Hill Side, Low Vedmell.	Slight odor and light yellowish tift.
Erosion Around Well.	I I A LA
Name: Christian Valenzulia	Signature:

	GROUNE	WATER MON	ITORING WE	LL INSPECTION RE	PORT
Facility:	Sanshine	CANON Well ID:	MW-2A	Date: <u>3-8-5</u>	2
Access: Concrete P	Accessibility: Vicinity of well of Presence of dep Remarks: Well Pad: Integrity: Presence of dep Remarks:	Good: lear of weeds and/or de ressions or standing wa arried SGMP/in tegly Erosion Good: ressions or standing wa	Fair: ebris: ter around well: 9 EQUIPME 1 ArcMd LC Inadequate: ter around well:	Poor: Yes: Yes: Yes: H CIAL CONTR' ACTS II. Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes: Yes:	No: No: DOWN + O
Protective	Outer Casing: Condition of Pro Condition of Loc Condition of Loc Condition of We	Material: Material: Material: Material: Material: Material: Material: Material: Material: Material: Material: Material: Material:	Good: V Good: V Good: V Good: V Good: V	Damaged: Damaged: Damaged: Damaged: Damaged:	
Well Riser:	Remarks: Condition of Rise Condition of Rise Measurment ref	Material: er: er Cap: erence point:	Good: Good: Yes:	Damaged: Damaged: No:	- -
Dedicated	Remarks: Pump: Condition: Pumping Rate (g Remarks:	Type:B Good: pm):///	Damaged:	t (Hz):	Aissing:
Field Certif	ication:	Chita Va	Title	ield Tech 3-	-8-21

.

ASSOCIATES

Geo-Logic

#### GROUNDWATER MONITORING PROGRAM WELL DATA SHEET

Site Name:

Well I.D.:

Collected By:

Casing Diameter (inches):

Starting Water Level:

Total Depth (feet):

Water column (feet):

Screen Length (feet):

Sample Method:

Horiba Model S/N:

SUNShine Canto	1
MW-2B	,
CV.	
4	
17.59	
70.90	
53-31	
÷	
Micro Purce	

WGGR6R5

Project No.:	-
Sampling Date:	_
Purge start Time:	_
Purge Stop time:	
Sampling (Well Recovery) Time:	
Ending Water Level (feet):	_
Total Purged (gallons):	
Duplicate Sample:	



	The second se				1			
TIME	GALLONS PURGED	`WATER LEVEL	рН	CONDUCTIVITY ms/cm	TURBIDITY NTU	D.O. mg/L	TEMPERATURE °C	O.R.P. mV
1002	l	19.17	7:25	3.10	0.0	2.74	21:90	-107
1005	11/2	20.02	7.25	3.10	0.0	2.37	22.01	-106
1008	2	20.65	7.25	3.16	0.0	2.30	22.63	-106
10:10	214	21.06	7.25	3.10	0.0	2.25	22.04	-106
1012	21/2	21.29	7.25	3.09	0.6	2.20	22.02	-106
						-		
						~		
			_					
Purge Sampling R	tates: 40	, PSi	3	5 Refill		Dis	-14	

Well condition: OK, Erosion Around Well, carried SAMPLING ERMIPMENT TO Wells, Additional Info/Comments: Cloydy, COOL, Slight Breeze. Water mostly Clear, NO OJOF

Name: Christ: Gn Valenzyelg

Signature:

	GROUN	IDWATER MO	ONITORI	NG WELL	INSPECTION	REPORT	
Facility:	SUNSHIA	CANON Well	ID: Mbr-	2B	Date: 3-8-	21	
Access:	Accessibility: Vicinity of wel Presence of de Remarks: C Observation Pad: Integrity: Presence of de Remarks:	Good: I clear of weeds and/ epressions or standing arright SqM Ved Erost Good: epressions or standing	Fair: Fair: For debris: g water aroun $f(.19) \in Q$ $f(.19) \in Q$ f(	d well: <i>WifMent</i> <i>Tund</i> nadequate: d well: <i>d TS</i> (	Poor: Yes: Yes: DOWN Hill Pl(. Yes: Yes: Poor: Yes: Yes: Poor: Yes: Yes: Yes: Poor: Poor: Yes: Yes: Poor: Yes: Poor: Yes: Poor: Yes: Poor: Yes: Poor: Yes: Poor: Poor: Yes: Poor: Poor: Yes: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poor: Poo: Poor: Poo: Poor: Poo: Poo:	No: No: No:	
Protective	Outer Casing: Condition of P Condition of L Condition of L Condition of V Remarks:	Materi rotective Casing: ocking Cap: ock: Veepholes:	al:Good Good Good Good		Damaged: Damaged: Damaged: Damaged:		- 410277
Well Riser:	Condition of R Condition of R Measurment r Remarks:	Materia iser: iser Cap: eference point:	al:Good Good Yes		Damaged: Damaged: No:		
Dedicated	Pump: Condition: Pumping Rate Remarks:	Type: Good: (gpm):	Blade	Damaged: Current (Hz)	:N/A	Missing: _	
Field Certif	fication:	Signed	n Valla	Title	KTech	<u>3-8-2</u> Date	

Geo-Logic

#### **GROUNDWATER MONITORING PROGRAM** WELL DATA SHEET

Site Name:

Well I.D.:

Collected By:

Casing Diameter (inches):

Starting Water Level:

Total Depth (feet):

Water column (feet):

Screen Length (feet):

Sample Method:

Singhire Cyp
mh-9
MC
Ц.
22.35
25.90
3.55
- )

Low Flow

Micro Purge

Project No.:
Sampling Date:
Purge start Time:
Purge Stop time:
Sampling (Well Recovery) Time:
Ending Water Level (feet):
Total Purged (gallons):
Duplicate Sample:

SUZR 2 NO YES

Horiba Model S/	N:	4.52/	w54166	300				
TIME	GALLONS PURGED	WATER LEVEL	рН	CONDUCTIVITY ms/cm	TURBIDITY NTU	D.O. mg/L	TEMPERATURE ℃	O.R.P. mV
9:43	.25	22.40	6-44	3.82	2.0	1.90	20.55	~100
9:53	15	22.42	6.44	3.83	1.9	1.26	20.91	-107
1011	.75	22.44	6.44	3.83	26	1.12	2084	-109
10:20	1.0	22.44	6.44	3.82	3.0	1.15	20.79	-109
10:29	1.25	22.45	6.44	3.02	2-8	1.09	20.87	-169
10:37	1.50	22.45	6.44	3.83	2.6	1.11	20.90	-110
							2	
			÷			S.,		
Purge Sampling F	Rates: 25 17 (led	p.51' w.tr	re+11	125 preepist	dis. tint	herso	3,0 a slig.	nt ode
Mall condition.	City Road a start had the second							
wen condition: UV require in corrying equiption in the serief to								
Additional Info/Comments: MCSTLY (Leer, Werk) \$1000000000000000000000000000000000000								
						· · · · · · · · · · · · · · · · · · ·		
Name: M. Ko Comphell Signature: The Conf								

Facility:       Sanhuel Cyn       Well ID:       MM-9       Date:       3-9-2)         Access:       Accessibility:       Good:       Fair:       V       Poor:		GROUNDWATER MONIT	FORING WELL IN:	SPECTION RE	PORT
Accessibility:       Good:	acility:	Sunshine Cyn Well ID: 1	NW-9 1	Date: <u>3-9</u>	-21 .
Accessibility:       Good:       Fair:       Poor:         Vicinity of well clear of weeds and/or debris:       Yes:       No:       Presence of depressions or standing water around well:       Yes:       No:       IV         Remarks:       Required       Corrrying       S cmpling       equiption       cmd         Dottler       Hot be well       Inadequate:	Access:		/		
Vicinity of well clear of weeds and/or debris:       Yes:       Vicinity of well clear of weeds and/or debris:         Presence of depressions or standing water around well:       Yes:       No:       Vicinity of well clear of weeds and/or debris:         Presence of depressions or standing water around well:       Yes:       No:       Vicinity of well clear of weeds and/or debris:         Doncrete Pad:       Inadequate:		Accessibility: Good:	Fair:	Poor:	
Presence of depressions or standing water around well:       Yes:No:		Vicinity of well clear of weeds and/or deb	ris:	Yes:	No:
Remarks:       Required       corrying scmpling equippend and         bother to the well       indequate:		Presence of depressions or standing wate	r around well:	Yes:	No:
bother to the yell         integrity:       Good:		Remarks: Required corru	guildans Ruil	equipam	t and
oncrete Pad:   Integrity:   Good:   Presence of depressions or standing water around well:   Yes:   No:   Remarks:   rotective Outer Casing:   Material:   Damaged:   Condition of Protective Casing:   Good:   V   Damaged:   Condition of Locking Cap:   Good:   Condition of Kiser:   Good:   Condition of Riser:   Condition of Riser:   Condition of Riser Cap:   Good:   Measurment reference point:   Yes:   No:   Remarks:         Dedicated Pump:   Type:   Condition:   Good:   Damaged:   Missing:   Pumping Rate (gpm):   Apple:   Current (Hz):   Remarks:	bo	Her ter Le vell		v	-
Integrity:       Good:       V       Inadequate:       No:       V         Presence of depressions or standing water around well:       Yes:       No:       V         Remarks:       Protective Outer Casing:       Material:       Meterial:       Material:       Material:       Damaged:	Concrete P	ad:			
Presence of depressions or standing water around well:       Yes:No:         Remarks:         Protective Outer Casing:       Material: <u>Meterial</u> <u>Muscuph</u> Condition of Protective Casing:       Good:       Damaged:         Condition of Protective Casing:       Good:       Damaged:         Condition of Protective Casing:       Good:       Damaged:         Condition of Locking Cap:       Good:       Damaged:         Condition of Locking Cap:       Good:       Damaged:		Integrity: Good:	Inadequate:		11
Remarks:         Protective Outer Casing:       Material:        Meterial:        Material:        Damaged:		Presence of depressions or standing wate	r around well:	Yes:	No:
Protective Outer Casing: Material:   Condition of Protective Casing: Good:   Condition of Protective Casing: Good:   Condition of Locking Cap: Good:   Condition of Lock: Good:   Condition of Lock: Good:   Condition of Weepholes: Good:   Condition of Weepholes: Good:   Condition of Riser: Good:   Condition of Riser: Good:   Condition of Riser: Good:   Condition of Riser Cap: Good:   Condition of Riser Cap: Good:   Measurment reference point: Yes:   No:		Remarks:	•		
Protective Outer Casing: Material:   Condition of Protective Casing: Good:   Condition of Locking Cap: Good:   Condition of Lock: Good:   Condition of Lock: Good:   Condition of Veepholes: Good:   Condition of Weepholes: Good:   Remarks: Material:   Well Riser:   Material:    PUT   Condition of Riser Cap: Good:   Condition of Riser Cap: Good:   Condition of Riser Cap: Good:   Measurment reference point: Yes:   No:					
Condition of Protective Casing:       Good:       V       Damaged:	rotective	Outer Casing: Material:	etel Fluid	mound	
Condition of Locking Cap:       Good:       V       Damaged:		Condition of Protective Casing:	Good:	Damaged:	
Condition of Lock: Good: U Damaged:		Condition of Locking Cap:	Good:	Damaged:	
Condition of Weepholes:       Good:        Damaged:          Remarks:		Condition of Lock:	Good:	Damaged:	
Remarks:         Well Riser:       Material:		Condition of Weepholes:	Good:	Damaged:	
Well Riser:       Material:       PVC         Condition of Riser:       Good:        Damaged:          Condition of Riser Cap:       Good:        Damaged:          Measurment reference point:       Yes:        No:          Remarks:		Remarks:			
Condition of Riser: Good: Damaged:   Condition of Riser Cap: Good: Damaged:   Measurment reference point: Yes: No:   Remarks: No:   Dedicated Pump: Type: Damaged:   Condition: Good: Damaged:   Dedicated Pump: Type: Damaged:   Condition: Good: Damaged:	Vell Riser	: Material: _	pvc		
Condition of Riser Cap: Good: V Damaged:		Condition of Riser:	Good:	Damaged:	
Measurment reference point:       Yes:       No:		Condition of Riser Cap:	Good:	Damaged:	
Remarks:   Dedicated Pump:   Type:   Condition:   Good:   Damaged:   Missing:   Pumping Rate (gpm):   Arrow   Remarks:		Measurment reference point:	Yes:	No:	a degramment and the second
Dedicated Pump: Type: <u>Gladim</u> Condition: Good: <u>Damaged:</u> Missing: Pumping Rate (gpm): <u>M</u> Current (Hz): <u>M</u> Remarks:		Remarks:			
Dedicated Pump:       Type:       Data difference         Condition:       Good:       Damaged:       Missing:         Pumping Rate (gpm):       A       Current (Hz):       A         Remarks:       Remarks:       Current (Hz):       A					
Condition: Good: Damaged: Missing: Pumping Rate (gpm): Q Q Current (Hz): Q Q Q Remarks:	Dedicated		dde		
Pumping Rate (gpm): Current (Hz): Current (Hz): Remarks:		Condition: Good:	Damaged:		Missing:
Remarks:		Pumping Rate (gpm): A / A	Current (Hz):	NA	**
neileira.		Remarks		Į V	
		ngingi Na.			
	· .				6.0
ield Certification: Mill Comfel Field Tech 3-9-11	ield Cert	ification: M. M. Canfel	Field Tech	3	-9-21

÷

1

÷

**GROUNDWATER MONITORING PROGRAM** WELL DATA SHEET

Site Name:

Well I.D.:

Collected By:

Casing Diameter (inches):

Starting Water Level:

Total Depth (feet):

Water column (feet):

Screen Length (feet):

Sample Method: Horiba Model S/N:

TIME

ľ

Purge Sampling Rates:

SUNShine CGAYON
DW-4
CV
4
32.25
134.60
102.35

N

3

34.1

31

3

2

GALLONS

PURGED

a

ŀ

0

2

9

	((1))
Project No.:	C.
Sampling Date:	-
Purge start Time:	-
Purge Stop time:	-
Sampling (Well Recover	y) Time:
Ending Water Level (feet	t):
Total Purged (gallons):	
Duplicate Sample:	

25020-1006

3 YES NO Micro Purge Low Flow gken 16-6-886 -5-Hore WATER CONDUCTIVITY TURBIDITY D.O. TEMPERATURE pН O.R.P. LEVEL NTU ms/cm mg/L °C mV 3. 2 .91 3 0.6 1 2 0.6 33.85 0.0 3 0.0 3 G 3 3.29 0.6 3.29 3 0.0 5

0

UTIM

1

6

Well condition: OK, Had to Carry Gauipment	towell.	Heavy Ension	Aran
Additional Info/Comments: COOL CLOYDY BIERZY			
which file creation filt with Davi.			

Re

1-30

Christian Valenzuela Name: Signature:

5

PS:

Geologists • Hydrogeologists • Engineers

**Geo-Logic** 

# ASSOCIATE

	GROUNDWATER MONITORING WELL INSPECTION REPORT							
Facility:	SUNShine CANYON Well ID: D	W-4 Dat	te: <u>3-8-</u> 2	1				
Access:			1/					
	Accessibility: Good:	Fair: Poo	or:					
	Vicinity of well clear of weeds and/or debri	s: N	Yes:	No:				
	Presence of depressions or standing water	around well:	Yes:	No:				
	Remarks: CANCOL COMPLING F	zenifment bown t	-owell.					
	LIPPOLY CASS	a Actual Lean	• 10.000					
Concrete F	Pad: []	A Floure well	ng an the second sec					
	Integrity: Good:	Inadequate:						
	Presence of depressions or standing water	around well:	Yes:	No:				
	Remarks: Burried, Not 4	Ble to see	Integrity					
Protective	Outer Casing: Material:	metal		Same and a state of the second se				
	Condition of Protective Casing:	Good:	Damaged:					
	Condition of Locking Cap:	Good:	Damaged:					
	Condition of Lock:	Good:	Damaged:					
	Condition of Weenholes:	Cood:	Damaged.					
	Pomodes		Damaged:					
	Reindiks.							
Well Riser:	Material:	PVC						
	Condition of Riser:	Good:	Damaged:					
	Condition of Riser Cap:	Good:	Damaged:					
	Measurment reference point:	Yes:	No:					
	Remarks:							
Dedicated		addor						
Dealebico		10000						
	Condition: Good:	Damaged:	Missir	ng: 🤌				
	Pumping Rate (gpm):	Current (Hz):	NH					
	Remarks:		V					
	,							
L	EN HEALM.	CLIT.	1 200					
Field Certil	fication:	M Field Iel	4 5-0-0	~				
	Signed	litte	Date					

,

**Geo-Logic** ASSOCIATES Geologists, Hydrogeologists, and Engineers

#### GROUNDWATER MONITORING PROGRAM SURFACE WATER DATA SHEET

Site Name:	Sundi	ve Cru	<u>^</u>	Project No.: / UOU							
Station I.D.: Collected By: Horiba Model S/N:	Extraction Res REJJU9414			Sampling Date: Sampling Time: Duplicate Sample:		03-04-71 1305 YES NO					
COLOR	ODOR	рН	CONDUCTIVITY ms/cm	TURBIDITY NTU	D.O. mg/L	TEMPERATURE °C	O.R.P. mV				
yellewith	yes	228	3.95	15.5	213	21,18	-20				
Surface water conditions (including stream flow rate, stream depth): Sourfleg Joken (											
Additional Info/Comments: SUUNY, Cord											
						1-/					
Be	ap Do	lines	()·	Bort	A	eli-					

Geo-Logic A S S O C I A T E S Geologists, Hydrogeologists, and Engineers

#### GROUNDWATER MONITORING PROGRAM SURFACE WATER DATA SHEET

Sp SITE: Sampline OR ain Sampling Date: Station I.D.: Sampling Time: **Collected By:** 97 **Duplicate Sample:** Horiba Model S/N: RETSURUH YES NO ugle CONDUCTIVITY TURBIDITY TEMPERATURE O.R.P. D.O. COLOR ODOR pH NTU °C us/cm mg/L mV 3,20 nes TT 78 5.79 29,2 0.68 7.51 RRS RUS Surface water conditions (including stream flow rate, stream depth): Saw -alcen 0 0 57 7" SRI RAS S HATE 177 0 CA Da -Sam 020 Additional Info/Comments:

Geo-Logic AssociATES Geologists, Hydrogeologists, and Engineers

SURFACE WATER DATA SHEET											
SITE: Saughing CAN.											
	Cans	inod									
Station I.D.:	Subdraing			Sampling Date:		03-04-21					
Collected By:	BS			Sampling Time:		_1140					
Horiba Model S/N:	SIN: <u>RSJSU94H</u>			Duplicate Sar	nple:	YES NO					
mslem											
COLOR	ODOR	pH	CONDUCTIVITY	TURBIDITY NTU	D.O. mg/L	TEMPERATURE °C	O.R.P. mV				
Vellowsh	Yes	5-96	2.88	127	1.78	זהרו	-57				
			8.91	0 - 1			11500				
Surface water conditions (including stream flow rate, stream depth): Sawyles Allen (12 HDFE											
tothe ar	IN TIN		kn .								
		<u></u>									
					<u></u>	2					
Additional Info/Comments: Remark 1 Con											
		J									
-		-									
·											
	151		6	>		$- O_{-}$					
1) Lers	set	iner	(F	Jad		ach					